Obsah

Seriál na pokračování

Text seriálu

Úlohy

Úloha VI . S … rozmixovávací (6 bodů)

Opište si funkci iterace_stanMap ze seriálu a pomocí následujících příkazů si vyberte deset velmi blízkých počátečních podmínek pro nějaké K.

 K=...;
 X01=...;
 Y01=...; 
 Iter1 = iterace_stanMap(X01,Y01,1000,K);
 ...
 X10=...;
 Y10=...;
 Iter10 = iterace_stanMap(X10,Y10,1000,K);

V Iter1Iter10 je tedy schováno tisíc iterací daných počátečních podmínek pomocí Standardní mapy. K tomu, abyste viděli, jak vypadá všech deset bodů po n-té iteraci, musíte napsat

 n=...;
 plot(Iterace1(n,1),Iterace1(n,2),"o",...,Iterace10(n,1),Iterace10(n,2),"o")
 xlabel ("x");
 ylabel ("y");
 axis([0,2*pi,-pi,pi],"square");
 refresh;

„o“ do příkazu plot píšeme, aby se body pro přehlednost vykreslily jako kroužky. Zbytek příkazů je pak zahrnut kvůli tomu, aby graf zahrnoval celý čtverec a měl ty správné popisky.

  1. Nastavte nějaké silné kopání, K alespoň tak -0,6, a umístěte svých deset počátečních podmínek velmi blízko sebe někam doprostřed chaotické oblasti (tj. třeba „na špičku propisky“). Jak se s iteracemi těchto deset počátečních podmínek oddaluje či přibližuje? Zdokumentujte na grafech. Jak vypadá deset původně velmi blízkých počátečních podmínek po 1 000 iteracích? Co z toho můžeme vyvodit o „míchavosti“ počátečních podmínek v dané oblasti?
  2. Vezměte opět nějaké poměrně silné kopání a umístěte svých deset počátečních podmínek poblíž svislé rovnováhy rotoru, tj. x = 0, y = 0. Jak se těchto deset počátečních podmínek oddaluje/přibližuje v čase? Co o jejich vzdálenosti lze říci po velkém počtu kopnutí?

Bonus Zkuste naprogramovat a vykreslit i chování nějaké jiné nakopávané mapy. (Pro inspiraci se můžete podívat do vzorového řešení minulé série.)