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Serial: Symmetry and Linear Algebra

In the previous part of the series we expanded our mathematical toolkit, which enabled us to
explore and describe some more complicated systems. We saw that when several particles oscil-
late, or a particle oscillates in more than one dimension, more types of oscillations in the same
system can occur. For every extra dimension or every extra particle, there is a corresponding
number of equations, which determine the solution we search for. We have also seen how we
can determine the ratio of amplitudes and phase difference between oscillations in different
directions.

Now, we will try to derive a stronger form of these results – instead of solving the equations
for oscillations separately, we will solve all the equations at once, using the formalism of linear
algebra. This formalism needs to be introduced first.

Linear Algebra
The purpose of linear algebra is to describe the behaviour of linear transformations of vectors.
Let’s analyse the different concepts in previous statement.

Vectors are collections of numbers, with some defined operations. They are usually indicated
by an arrow above the letter or by using bold font; here we will describe them as v. The
components of the vectors are written as the symbol for the vector together with a lower index
that is associated with the given component, i.e. the first component of vector u is marked
as u1. Sometimes, a letter instead of a number can be used as the index, for example associating
the component with a given Cartesian axis, so we can speak of the x-component of vector t,
marked as tx. In our case, vectors will be collections of coordinates of all particles for all possible
directions of motion, e.g. if we were studying a system consisting of three particles, with two
particles fixed to a plane and one particle free to move through a whole space, our vector would
have 7 components.

We can define vector addition in terms of the vector components as follows

t = u + v : ∀n : tn = un + vn ,

where n is taken from the possible indices of u, which are the same set as indices of v and
hence also t. Next, we define scalar multiplication for scalar a

v = au : ∀n : vn = aun .

Vector subtraction can be interpreted as a combination of vector addition and scalar multipli-
cation

u − v = u + (−1)v .

Last important operation, which we define between vectors, is the scalar product (different from
scalar multiplication). This product reduces two vectors to a single scalar, and for vectors u
and v it is defined as follows

s = u · v =
∑

n

unvn ,
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where n is again taken from the available indices of u and b. If a scalar product of two vectors
is equal to zero, we say that the vectors are perpendicular to each other.

We can notice that vector addition will correspond to the superposition of two types of os-
cillations. Hence, the vectors replicate the properties of solutions of linear differential equations,
which we use to represent the oscillating systems.

Vector Basis
If we imagine vector as a position in Cartesian system of coordinates, it is clear that the vector
can be decomposed into a sum of other vectors, with all the vectors perpendicular to each other.
This type of decomposition of the vector is called the basis decomposition. In our algebraical
notation, we could write

u =
(

3
5

)
= 3

(
1
0

)
+ 5
(

0
1

)
= 3e1 + 5e2 ,

where we defined basis vectors e1 and e2. We can use scalar product to check that the basis
vectors are in fact perpendicular

e1 ⊥ e2 ⇐⇒ e1 · e2 = 0 .

The choice of the basis is not unique however – we could have chosen a different basis set

e1 =
(

1
−1

)
, e2 =

(
1
1

)
,

which still includes two perpendicular vectors, and we could have written

u = e1 + 4e2 .

Generally, it is useful to choose basis vectors so that they have a unit length, i.e. they satisfy
the condition

∀n : en · en = 1 ,

which is not satisfied by the previous example.
Algebraically, the decomposition into an orthonormal basis (that is, basis set of perpendic-

ular vectors, each of unit length) can be realized by consequent scalar products of the vector
with basis vectors taken from the basis set. The scalar products determine the components of
the vector in the direction of the given basis vector, i.e. we can write

u = (u · e1)e1 + (u · e2)e2

We should note that such basis decomposition can be done for an arbitrary number of basis
vectors. Therefore, we do not need to limit ourselves to three dimensions, as we are used to in
the geometrical interpretation of vectors.
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Linear Transformations of Vectors
Operations such as scalar multiplication or scalar product are linear operations, but they are
only a few examples of all possible linear transformations that can be done with vectors. For
example, we could create a vector v with components v1 = u2 +u1, v2 = 0, where u is a different
vector. Generally, we can define a linear transformation T of vector u as a new vector v = T (u),
with the transformation satisfying

T (au + bv) = aT (u) + bT (v) .

Let’s now try to split the transformation into elementary steps. We know that vectors can
be split into sum of basis vectors, multiplied by the compenents of the vector – that is what we
called the basis decomposition. For example

u =
(

1
2

)
=
(

1
0

)
+ 2
(

0
1

)
= u1e1 + u2e2 .

So, linear transformation T of u satisfies

T (u) = v = T (e1)u1 + T (e2)u2 .

How can we find the components of the new vector v? We need to find its projection onto the
basis vectors, i.e.

v1 = e′
1 · v = e′

1 · T (e1)u1 + e′
1 · T (e2)u2 ,

v2 = e′
2 · v = e′

2 · T (e1)u1 + e′
2 · T (e2)u2 ,

where basis vectors e and e′ can, but need not to be from the same basis set. Hence, we can see
that in order to determine the components of the transformed vector, we only need to know the
components of the original vector (u1 and u2) and a set of coefficients, which can be labeled as

m11 = e′
1 · T (e1) , m12 = e1

′ · T (e2) , m21 = e′
2 · T (e1) , m22 = e′

2 · T (e2) .

These coefficients are independent of a specific vector u. They only reflect the properties of the
transformation T and of the chosen basis set(s). These coefficients can be organised into an
object we call a matrix.

Matrix Algebra
When we compare the expressions for components of the matrix mij and the basis decompo-
sition of a vector, we can see that the matrix can be interpreted as a vector that consists of
other vectors. Transformation of vector u can then be seen as application of the scalar product
between the vectors inside the matrix and the vector u. This observation can be used to define
the matrix product, basic building block of matrix algebra. In order to understand the matrix
product, lets explicitly write the matrix as collection of vectors

M =
(
m1
m2

)
.
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This matrix acts on vector i, resulting into a new transformed vector v

v = Mu =
(
m1
m2

)
u =

(
m1 · u
m2 · u

)
=
(

m11u1 + m12u2
m21u1 + m22u2

)
.

Usually we write the matrix as a collection of the components. In that case, the vectors that
constitute the matrix need to be written horizontally – the need for this swap will be explained
later. Then, the matrix M is

M =
(

m11 m12
m21 m22

)
.

Matrix product can then be defined without reference to the vectors of the matrix. The i com-
ponent of vector v = Mu is defined as

vi = (Mu)i =
∑

j

Mijuj ,

where indices j runs over all indices of vector u. Here, we can notice first condition on the objects
in matrix product – the number of dimensions of vector u has to be equal to the number of
columns of matrix M .

This definition of matrix product can be readily extended to products of two matrices A =
= MB as

Aij =
∑

k

MikBkj .

A specific example of the matrix product follows(
1 3 2
5 −1 3

)( 2 1
−1 −2
3 −1

)
=
(

5 −7
20 4

)
.

Another important matrix operation is the so called transposition, which effectively swaps
the rows and columns of a matrix. Transpose of matrix M is labeled MT . A simple example
follows (

1 3 2
5 −1 3

)T

=

(1 5
3 −1
2 3

)
.

In terms of the components of the matrix, transposition can be written as

(Mij)T = Mji .

Vectors are a specific case (
1 2

)T =
(

1
2

)
.

So, the original equation for multiplication of vector u by a matrix M should be correctly
written as

Mu =
(
mT

1
mT

2

)
u .
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Furthermore, we can notice that scalar product of two vectors can be written as matrix
product of the transposed and original vector, i.e.

u · v = uTv .

Finally, we define component-wise addition and scalar multiplication for matrices, similarly
to vectors

A = B + M : Aij = Bij + Mij ,

sA : (sA)ij = sAij .

These are the fundamentals of matrix algebra. We will use these to solve equations, which
mix the number of degrees of freedom in a non-trivial way. In order to solve these equations
completely, however, we need an additional piece of knowledge from the linear algebra. This
will be the concept of eigenvectors and eigenvalues.

Eigenvectors and Eigenvalues
Square matrices transform vectors into new vectors with the same number of components.
It is therefore possible that the transformed vector is the same vector as the original, up to
a scalar factor. Such vector is called the eigenvector of the given matrix, and the corresponding
scalar multiple is called the eigenvalue of the matrix for the given eigenvector. These variables
represent important properties of the matrix. Algebraically, the eigenvector v of matrix M is
defined by equation

Mv = λv ,

where λ is the corresponding eigenvalue. A square matrix of dimension n can have up to n dif-
ferent eigenvectors, each with a corresponding eigenvalue. How can we find these eigenvectors?
We can try to guess the eigenvector based on some properties of the system such as the sym-
metry of the system (see later), or we can determine the eigenvector based on the corollary of
the previous equation

(M − λI)v = 0 ,

where I is the so called unit matrix – a square matrix with components equal to zero everywhere
except at the diagonal, where the components are equal to 1. We can quickly check that any valid
matrix product of unit matrix and a vector or another square matrix leaves the other vector
(or matrix) unchanged. The equation above has either a trivial solution with all components
of v equal to zero, or the matrix M − λI contains column vectors, which can be combined
in such a way that the resulting vector is zero. But this means that the vectors are linearly
dependent, i.e. at least one of the vectors can be expressed as linear combination of the others.
An important result from the theory of linear equations is that in such a case, the variable
called the determinant of the matrix is equal to zero.

Determinant can be determined for any matrix, but we will mainly use the determinant for
2x2 matrices. For such matrices, the determinant can be calculated from the components of the
matrix as

M =
(

a b
c d

)
⇒ |M | = ad − bc ,

where |M | stands for the determinant of the matrix M . Next, we will use determinant of a
diagonal matrix, which is simply the product of the diagonal elements. As a generalization,
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when a matrix consists of several blocks of matrices lying on a diagonal, the determinant of the
overall matrix is the product of the determinants of the individual blocks. For example

M =

a b 0 0
c d 0 0
0 0 e 0
0 0 0 f

 ⇒ |M | = ef(ad − bc) ,

where we used that the determinant of 1x1 matrix is equal to the only component of the matrix.
Now, we can explore an example calculation of eigenvector and eigenvalue. Consider matrix

M =
(

1 2
2 1

)
.

In order to find the eigenvalues, we need to solve equation
|M − λI| = 0 ,∣∣∣∣ 1 − λ 2

2 1 − λ

∣∣∣∣ = 0 ,

(1 − λ)2 − 4 = 0 ,

(1 − λ)2 = 4 ,

1 − λ = ±2 ,

λ = 1 ± 2 , λ ∈ {3, −1} .

As we know the eigenvalues λ, we can find the corresponding eigenvectors
(M − λI)v = 0 ,

λ = −1 :
(

1 − (−1) 2
2 1 − (−1)

)(
v1
v2

)
=
(

0
0

)
,(

2 2
2 2

)(
v1
v2

)
=
(

0
0

)
.

The solution of this system of equations is clear – v1 = −v2 and the eigenvector is for example

v =
(

1
−1

)
.

We say for example, because the eigenvector can be multiplied by an arbitrary scalar number,
without changing its behaviour under the trasformation by M . The important quantity is the
ratio between the components of the eigenvector, not the absolute value.

As a note – we could wonder why did we not simply solve the separate rows of equation
(M −λI)v = 0? The problem is that in the given set of n equations, we have n+1 unknowns – n
components of the eigenvector and the eigenvalue. The result would be the same in the end,
we would obtain equation with the same component of v on both sides, so we could divide by
this component, provided it is different from zero. However, it is usually a lot simpler to find
the determinant of the matrix, because we immediately get the eigenvalue, which usually has
some physical significance as well. The fact that we are still solving system of n equations and
n + 1 unknowns presents itself in the fact that the eigenvector can be multiplied by arbitrary
scalar multiplier.
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Normal Modes
Enough with the obscure mathematics, let’s focus on physics now. In the following examples,
we will illustrate the usefulness of the developed techniques – we will be able to describe the
oscillations of non-trivial oscillators. The first example includes two masses, interconnected by
a spring and connected to a wall, while oscillating in vertical direction only. The second example
features two particles, connected by a spring and connected to walls on both sides, free to move
in a plane.

Two Masses Underneath the Ceiling
Consider the following setup: first spring with spring constant k is attached to the unmoving
ceiling on one end and to a mass m on the other end. Second spring, also with spring constant k,
is attached to the first mass on one end and to a second (but otherwise identical) mass m
on the other end. The equilibrium position of the system (when no oscillations occur) takes
place when the gravitational forces balance the tension in the springs. We will not determine
this equilibrium position here, application of basic results from statics can be used to get its
characteristics. We will only consider the small displacements from this equilibrium position.
Let us label the displacement of the first mass as x1 and the displacement of the second mass
as x2. Assume that both displacement can be described as oscillating, i.e.

x1(t) = Re
(
Aeiωt

)
,

x2(t) = Re
(
Beiωt

)
.

Any phase difference between the oscillations can be expressed as part of the constant B, which
can be written as

B = |B|eiφ ,

where φ is the phase difference. Then

x2(t) = Re
(
|B|ei(ωt+φ)) .

First spring is elongated by x1 compared to the equilibrium position, the second spring is
elongated by x2 − x1. The tension in the second spring is given as

F2 = −k(x2 − x1) .

In the first spring, the tension is
F1 = −kx1 − F2 ,

as the force in the second spring needs to be balanced by the force in the first spring. Due to
the Newton’s second law

F1 = m
d2x1

dt2 = −kx1 + k(x2 − x1) ,

F2 = m
d2x2

dt2 = −k(x2 − x1) .

Applying Fourier substitution

−mω2x1 = −2kx1 + kx2 ,

−mω2x2 = kx1 − kx2 .
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x1

k

m

x2

k

m

m

m

Fig. 1: The geometry of the problem is sketched on the left, including definitions of x1 and x2.
On the right, a snapshot during the oscillations of one of the normal modes is displayed. The

arrows indicate the direction of motion.

This equation can be written as matrix equation – we are trying to find oscillations of x1 and
x1, which are independent, so we can interpret them as different dimensions of the motion.
Specifically, lets define vector x

x =
(

x1
x2

)
.

Then,
ω2Mx = Kx ,

where the matrix K is
K =

(
2k −k
−k k

)
,

and matrix M is
M =

(
m 0
0 m

)
and both sides of the equation were multiplied by (−1). Hence, our system of equations is
represented by a single matrix equation

ω2
(

m 0
0 m

)(
x1
x2

)
=
(

2k −k
−k k

)(
x1
x2

)
.

This leads to (
2k − mω2 −k

−k k − mω2

)(
x1
x2

)
=
(

0
0

)
,

therefore
(K − ω2M)x = 0 .
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This is a variant of the equation, which needs to be solved in order to find the eigenvalues of
a matrix. Again, we need to find value of ω such that the determinant of the matrix in the
brackets is zero, |K − ω2M | = 0. The determinant can be determined as∣∣∣∣ 2k − mω2 −k

−k k − mω2

∣∣∣∣ = (2k − mω2)(k − mω2) − k2 = 0 ,

and hence

2k2 − 2kmω2 − kmω2 + m2ω4 − k2 = 0 ,

m2ω4 − 3mkω2 + k2 = 0 .

Dividing by m2 and defining ω2
0 = k

m
leads to

ω4 − 3ω2
0ω2 + ω4

0 = 0 .

This biquadratic equation can be solved as a quadratic equation for ω2

ω2 =
3ω2

0 ±
√

9ω4
0 − 4ω4

0

2 .

Therefore, we discover two possible oscillation frequencies

ω = ω0

√
3
2 ±

√
5
4 .

What is the ratio of the amplitudes of oscillations, and the phase difference? To find these
values, we need to also find the eigenvectors of the matrix. First row of the matrix equation is

mω2x1 = 2kx1 − kx2 .

Since we already know the eigenvalue, we can substitute this value in to get

mω2
0

(
3
2 ±

√
5
4

)
x1 = 2kx1 − kx2 ,

ω2
0

(
3
2 ±

√
5
4

)
x1 = 2ω2

0x1 − ω2
0x2 .

We can divide this equation by ω2
0 and by a factor eiωt, which is included in both x1 and x2,

and therefore (
3
2 ±

√
5
4

)
A = 2A − B ,(

−1
2 ±

√
5
4

)
A = −B ,

B

A
= 1

2 ∓
√

5
4 .
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The ratio of the amplitudes is therefore different for different frequencies. For higher frequency

ω =

√
3
2 +

√
5
4

√
k

m

the system oscillates so that the ratio of the amplitude of the second mass to the amplitude of
the first mass is

B

A
= 1

2 −
√

5
2 .

This ratio is negative, meaning that in any moment of the oscillation, the masses are moving
in opposite directions. The lower frequency

ω =

√
3
2 −

√
5
4

√
k

m

corresponds to the situation with ratio of amplitudes

B

A
= 1

2 +
√

5
2

and the masses move in the same direction (but at different speeds) during the oscillations. In
terms of phase difference, we could have written

−1 = eiπ

and therefore determine that the masses oscillate exactly in anti-phase, a result which we
obtained anyway.

Let’s take a moment to realize our achievement. We found that for system of two particles,
there are two special frequencies, at which the dynamical equations for oscillations can be
satisfied. These frequencies correspond to two types of oscillations, characterised by components
A and B of the oscillation vector. These types of oscillations are called normal modes.

You could argue that we have only described a very specific case of the motion, and that
there surely exist a more complex motion the system can exhibit. The key strength of the
normal modes description lies in the linearity of the dynamical equations. Since the equations
are linear, any superposition of the two eigenvectors we found is a valid motion of the system
as well. Algebraically, if we have an oscillation vector A1 such that

ω2MA1 = KA1

and another A2 for which
ω2MA2 = KA2 ,

then, for any scalar factors a and b,

ω2M (aA1 + bA2) = K (aA1 + bA2)

and hence even the vector aA1 + bA2 is the solution of the dynamic equations. So, besides
the two specific types of oscillations, we also discovered infinitely many types of motions, all
of which can be interpreted as superpositions of the normal modes. This characteristic truly
captures the ease of description of linear systems – in order to describe whole classes of motion,
we only need a small number of parameters.
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Elementary String
Now, let’s turn our attention to the second example. Let there be two particles of equal mass m.
First particle is connected to a wall by a spring with spring constant k. The wall intersects the
origin of the system of coordinates. The second particle is connected to a second wall (parallel
to the first wall) at point R, which is perpendicular to planes of both walls. The spring constant
of the spring connecting the second mass is also k. Finally, both particles are connected together
by one more spring with spring constant k. The particles are free to move in plane perpendicular
to the plane(s) of the wall(s).

The solution of this example is presented here in a somewhat shorter form, in order to allow
you to fill the gaps yourselves. Let’s start by finding the equilibrium position. Let the position
of the first particle be determined by vector r1 and the position of the second particle by vector
r2. The force acting on the first particle is

F1 = −kr1 + k (r2 − r1) .

The force acting on the second particle is

F2 = −k(r2 − R) + k (r1 − r2) .

In the equilibrium position, the net forces are zero, and hence

r1 = 1
3R ,

r2 = 2
3R .

We will label these positions as r1,0 and r2,0. Small displacements from these positions will be
labeled as x1 and x2, so that r1 = r1,0 + x1, and similarly for the second particle. For these
small oscillations, the forces on the particles are

F1 = −kx1 + k (x2 − x1) ,

F2 = −kx2 + k (x1 − x2) .

The Newton’s second law states that

F1 = m
d2r1

dt2 ,

F2 = m
d2r2

dt2 .

Since r1,0 and r2,0 are constant vectors

F1 = m
d2x1

dt2 ,

F2 = m
d2x2

dt2 .
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Again, we will assume that the system oscillates. From the Fourier substitution, we can derive
F1 = −mω2r1, and similarly for the second particle. In the matrix form, our system of equations
becomes mω2 − 2k 0 k 0

0 mω2 − 2k 0 k
k 0 mω2 − 2k 0
0 k 0 mω2 − 2k


x11

x12
x21
x22

 =

0
0
0
0

 ,

where x11 is the first component of vector x1 etc. The determinant of this matrix is not readily
obtainable, because it is not a diagonal matrix. We can notice however that only components
of indices 1 and 2 are mixed together, respectively. If we regroup the components in our vector
so that these components are next to each other, we obtain the following matrix equationmω2 − 2k k 0 0

k mω2 − 2k 0 0
0 0 mω2 − 2k k
0 0 k mω2 − 2k


x11

x21
x12
x22

 =

0
0
0
0

 .

This matrix consists of two matrices on the diagonal, and therefore we know how to find the
determinant, i.e.

D =

∣∣∣∣∣∣∣
mω2 − 2k k 0 0

k mω2 − 2k 0 0
0 0 mω2 − 2k k
0 0 k mω2 − 2k

∣∣∣∣∣∣∣ ,

D =
∣∣∣∣ mω2 − 2k k

k mω2 − 2k

∣∣∣∣2 =
((

mω2 − 2k
)2 − k2

)2
.

Putting D = 0 leads to

k2 =
(
mω2 − 2k

)2
,

k = ±
(
mω2 − 2k

)
,

(2 ± 1)k = mω2 .

Let

ω0 =

√
k

m
,

which leads to
ω =

√
2 ± 1ω0 .

Thus, we found only two frequencies, even though there are total of 4 normal modes. This
means that some of the modes have identical frequencies. By substitution of the eigenvalue into
the matrix equation, we can find the eigenvectors. Let’s start with ω = ω0m k

m
− 2k k 0 0

k m k
m

− 2k 0 0
0 0 m k

m
− 2k k

0 0 k m k
m

− 2k


x11

x21
x12
x22

 =

0
0
0
0

 .
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Again, we encounter the fact that the two blocks of the matrix are independent. That is to say,
the first two components of the eigenvector are not mixed with the other two components by
the matrix, and vice versa. Hence, we can find two eigenvectors corresponding to this single
frequency (as we expected), for example1

1
0
0

 ,

0
0
1
1

 .

For ω =
√

3ω0, the eigenvectors are  1
−1
0
0

 ,

 0
0
1

−1

 .

Fig. 2: Indicated direction of motion for the particles during normal mode oscillation.

The Role of Symmetry
Many oscillations problems have some form of symmetry. For example, in the previous problem
we could exchange the coordinates used for the description of the first and second particle
without changing the problem – we would get exactly the same set of dynamic equations. We
therefore say that the system is symmetric under the exchange of particles.

The symmetry can be defined in terms of a matrix – such matrix S will have the property
that (using the notation from the previous example)

S

x11
x21
x12
x22

 =

x21
x11
x22
x12

 ,

which corresponds to the exchange of particles. The determination of such matrix is relatively
straightforward – each component of the new vector can be related to a single component of
the original vector, which is chosen by the matrix S. Hence

S =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


13



FYKOS Serial XXXIV.IV Symmetry and Linear Algebra

We expect that the modes of the system will somehow obey this symmetry. It turns out that
a general rule applies. When an oscillating system obeys a certain symmetry, than the eigenvec-
tors of the oscillations are at least partially given as eigenvectors of the symmetry matrix. The
proof of this statements is not so obvious, and is not derived here. For the more curious among
you, the symmetry can be more rigorously defined as invariance of Hamiltonian of the system
under the application of the symmetry operation. You can try to decipher the consequences of
this statement in the context of Noether’s theorem, if you know it. However, for the solution
of the problems in this series this is not necessary.

What will be necessary is the ability to determine the matrix that applies the symmetry
operation (most commonly particle exchange) and the ability to find the eigenvectors of the
given symmetry matrix. In the previous case, we can quickly check that the eigenvectors from
the previous example are indeed eigenvectors of S with eigenvalues ±1. The modes are therefore
either symmetric or antisymmetric under the particle exchange.

The advantage of searching for eigenvectors of symmetry matrices lies in the simplicity of
these matrices compared to the dynamic matrices, which drive the oscillations. That means,
when we obtain eigenvectors of the symmetry matrix, we can simply plug these into the dynamic
equations to get the eigenvalues of oscillations.

Incomplete Symmetries
It is possible for a system to have a certain symmetry that does not completly determine the
behaviour of the system. For example, consider a ball moving in a valley created by extending
a parabola lying in the xy plane (given for example by condition y = x2) into the z direction –
the equation remains y = x2, independent of z. Clearly, the symmetry given by mirror plane
through yz plane is a symmetry of the system, i.e. symmetry given by x → −x. Let the position
of the ball be given by vector r =

(
x y z

)
, then the symmetry matrix is

S =

(−1 0 0
0 1 0
0 0 1

)
.

Notice that the block of two lower rows and two columns on the right form an identity
matrix in components y and z. This means, that the symmetry defined by S does not pose
any restrictions on these components – y and z can take any value (in other words, applying S
to r leaves these components unchanged). This means that this symmetry can eliminate up to
one degree of freedom from our dynamic equation. Hence, only one eigenvector of oscillations
stems from this symmetry of the system. However, since the eigenvectors of oscillations are
perpendicular, we can use the eigenvectors of symmetry to eliminate the necessary degrees of
freedom and have an easier time when solving for the eigenvectors of oscillations.

When substituting eigenvectors of symmetry matrix for the eigenvectors of oscillations, we
must be careful when the symmetry is incomplete – if the given component of the eigenvector
is not restricted by the symmetry, we need to substitute a general number for this component.
This has to be done because even though the component is not restricted by the symmetry
we found, it might be restricted by the symmetry of laws of dynamics itself. For example,
conservation of momentum can impose restrictions on the components, which are otherwise
unrestricted by the symmetry under exchange of particles.
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Infinite Number of Oscillators
We learned how to solve systems containing a certain finite number of oscillators. How do we
approach systems where the number of oscillators goes effectively to infinity? In such a case, we
can sometimes change its description to a description using continuum variables, leading to the
description of the wave phenomenon. Some elementary properties of waves, such as dispersion
relation or superposition will be discussed in the next episode of the series.
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