Vyhledávání úloh

astrofyzika (20)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (16)gravitační pole (13)hydromechanika (20)jaderná fyzika (5)kmitání (15)kvantová fyzika (1)magnetické pole (6)matematika (35)mechanika hmotného bodu (72)mechanika plynů (21)mechanika tuhého tělesa (31)molekulová fyzika (11)geometrická optika (17)vlnová optika (7)ostatní (25)relativistická fyzika (10)statistická fyzika (12)termodynamika (29)vlnění (13)

(3 body)5. Série 31. Ročníku - 1. schodisko na Mesiaci

Pokud bychom jednou kolonizovali Měsíc, bylo by vhodné na něm používat schody? Představte si na Měsíci klesající schodiště s výškou schodu $h=15 \mathrm{cm}$ a délkou $d=25 \mathrm{cm}$. Odhadněte počet schodů $N$, které by přeletěl člověk, jestliže před vstupem na schody šel rychlostí $v=5{,}4 \mathrm{km\cdot h^{-1}}=1{,}5 \mathrm{m\cdot s^{-1}}$. Tíhové zrychlení na povrchu Měsíce je šestkrát slabší než na povrchu Země.

(5 bodů)5. Série 31. Ročníku - 3. klín

figure

Klíny

Máme dva klíny o hmotnostech $m_1$, $m_2$ a úhel $\alpha $ (viz obrázek). Vypočítejte zrychlení levého klínu. Předpokládejte, že nikde nedochází ke tření.

Bonus: Uvažujte tření s koeficientem $f$.

(8 bodů)5. Série 31. Ročníku - 5. záludná kapka

Mějme kulatou kapku o poloměru $r_0$ tvořenou vodou o hustotě $\rho \_v$, která shodou okolností padá v mlze v homogenním tíhovém poli $g$. Uvažujme vhodnou mlhu se speciálními předpoklady. Tvoří ji vzduch o hustotě $\rho \_{vzd}$ a vodní kapičky s průměrnou hustotou $\rho \_r$, když uvážíme, že se rozptýlí zcela rovnoměrně. Jestliže kapka propadne nějakým objemem takové mlhy, vysbírá všechnu vodu, která se v tomto objemu nachází. Na místě zůstane pouze vzduch. Jaká je závislost hmotnosti kapky na vzdálenosti uražené v takovéto mlze?

Bonus: Řešte pohybové rovnice.

(6 bodů)4. Série 31. Ročníku - 3. divně tvarovaná nádobka

Máme válcovou skleničku, která má zboku u dna malou díru o ploše $S$. Tato nádoba je naplněná vodou, která samovolně přetéká do druhé nádoby, která je tentokrát již bez díry. Jaký tvar by musela mít druhá nádoba, aby v ní hladina rostla rovnoměrně? Předpokládejte, že má být válcově symetrická.

Bonus: Dna obou nádob jsou ve stejné výšce a nádoby jsou dírou spojené.

Karel se díval, jak se nalévá sklenička na rautu.

(7 bodů)4. Série 31. Ročníku - 5. nemožnost nakažení

Představme si, že roztlačíme nějakou bakterii obvyklé velikosti na rychlost $v = 50 \mathrm{km\cdot h^{-1}}$ ve vodorovném směru a necháme ji volně letět ve vzduchu. Jakou vzdálenost zhruba urazí, než se zastaví?

Výsledek vás možná překvapí. Jak je tedy možné se infikovat tímto způsobem bakteriální infekcí? Diskutujte, proč je to možné i přes takový výsledek.

Karel se díval na Youtube na TED-Ed.

(3 body)3. Série 31. Ročníku - 2. zrychleníčko, zrychlení

figure

Náčrt elipsy

Na obrázku vidíte náčrt elipsy s ohnisky $F_1$ a $F_2$ a několika vyznačenými body na ní. Uvažujte, že elipsa znázorňuje trajektorii nějakého hmotného bodu. Znázorněte do obrázku zrychlení, která působí na hmotný bod v jednotlivých vyznačených bodech dráhy pro dvě situace (jde o směry a vzájemné poměry zrychlení (které je větší/menší) v různých bodech v rámci jednoho náčrtu).

  1. V ohnisku $F_1$ je umístěno hmotné těleso, kolem kterého hmotný bod obíhá. Uvažujeme, že platí 2. Keplerův zákon.
  2. Těleso má konstantní velikost rychlosti, pouze se pohybuje po elipse.

Karel na konferenci slyšel, že s takovými úlohami mají problémy i vysokoškoláci.

(7 bodů)2. Série 31. Ročníku - 5. skleněný déšť

Dělník si na stavbu mrakodrapu přinesl vak se skleněnkami, aby se s nimi mohl pochlubit svým kolegům. A co se nestane – vak se vysype a kuličky padají skrze lešení směrem k zemi. Lešení se skládá z jednotlivých poschodí o výšce $h$. Podlaha každého poschodí se skládá ze stejných mříží, ve kterých díry zaujímají $k  \%$ z celkové plochy mříže. Uvažujme zjednodušený model propadávání kuliček lešením, kdy, pokud kulička spadne na díru v lešení, tak projde bez ovlivnění, a pokud spadne na pevnou část mříže, tak se její rychlost sníží na $0$ a ihned začne dále padat (tj. velikost kuliček je zanedbatelná vůči velikosti děr v lešení, kuličky se od lešení nijak neodráží a po dopadu na pevnou část mříže se ihned skutálí do díry a dále začínají padat). Nakonec neuvažujme ani potenciální srážky kuliček mezi sebou. Předpokládejte, že kuličky se z tašky sypou s konstantním hmotnostním průtokem $Q$. Jakou silou budou kuličky působit na každé patro lešení, až se situace ustálí?

Mirek chtěl převést Ohmův zákon do mechaniky.

(3 body)0. Série 31. Ročníku - 1. trám

Mějme tři pevné body ve stejné výšce. Vzdálenost mezi prvním a druhým je $a = 1 \mathrm{m}$, vzdálenost mezi druhým a třetím je $b = 1,5 \mathrm{m}$. Přes body položíme dokonale tuhý trám s hmotností $m = 12 \mathrm{kg}$. Spočítejte, jaká síla působí na každý z bodů.

2. Série 22. Ročníku - 3. ledvinové koule

Malá koule stojí v klidu na velké kouli, která volně leží na podložce. Do malé koule nepatrně strčíme a ta se svalí na zem. Jak daleko od původního bodu dotyku velké koule se zemí malá koule dopadne?

na teoretické mechanice zkoulel Lukáš Ledvina

2. Série 22. Ročníku - E. šikmá věc

Kolik vody musí být v PET lahvi postavené na uzávěr, aby její stabilita byla největší (při vychýlení ze svislé polohy spadne ze nejdelší čas)? Nezapomeňte na teoretickou předpověď.

nad vypitou lahví se zamyslel Béda

1. Série 22. Ročníku - 1. klouzání a kmitání

figure

Dvě závaží o hmotnostech $m$ a $M$ jsou spojena pružinou o tuhosti $k$ a leží na hladké podložce (tření můžeme zanedbat). Tělesu $m$ udělíme rychlost $\vect{v}$ (viz obrázek). Jaká bude nejkratší vzdálenost mezi tělesy a kdy jí dosáhnou?

V ročenkách kanadské FO našel Honza Prachař.

3. Série 10. Ročníku - 1. skokan

Člověk padá z můstku do bazénu, přičemž v bazénu je voda a můstek je ve výšce $h$ nad hladinou. Náš skokan má hmotnost $M=80\;\mathrm{kg}$, hustotu $ρ=0,9\; \textrm{g}\cdot \mathrm{cm}^{-3}$, je vysoký $L=1,7\;\mathrm{m}$ a na počátku skoku (volného pádu) byl v klidu. Do jaké největší hloubky $H$ se skokan ponoří? Jaký bude jeho další pohyb? Odpor vodního prostření:

  • zanedbejte
  • nezanedbejte

2. Série 10. Ročníku - 2. magnetické kyvadlo

figure

V homogenním tíhovém poli (tíhové zrychlení $g=9,81\;\mathrm{m}\cdot \mathrm{s}^{-2})$ je na závěsu zanedbatelné hmotnosti délky $l=1,00\;\mathrm{m}$ umístěna malá kovová kulička o hmotnosti $m=10,0\; \textrm{g}$. Na kuličku byl přiveden náboj o velikosti $Q=5,0\; \textrm{μC}$. Celá tato aparatura se nachází ve svislém homogenním magnetickém poli, jehož vektor magnetické indukce $\textbf{B}$ o velikosti $B=0,5\; \textrm{T}$ má stejný směr jako tíhové zrychlení $\textbf{g}$. Vnější magnetická pole jsou vůči tomuto magnetickému poli zanedbatelná. Celá soustava se nachází v klidu. Závěs vychýlíme o úhel $α = 7°$ a uvolníme. Popište pohyb kuličky po uvolnění.

2. Série 10. Ročníku - E. kostka cukru

Zjistěte, jaký tlak vydrží kostka cukru, tj. jaká je její mez pevnosti v tlaku. V řešení nezapomeňte uvést parametry použitých kostek (rozměry kostky, značku cukru apod.). Vhodnou metodou proveďte tolik měření, aby vaše výsledky byly průkazné (nejméně deset měření na jeden druh kostky). Z výsledků zkuste vyvodit nějaké závěry, můžete např. odhadnout práci potřebnou na rozdrcení kostky cukru na cukr krystal.

2. Série 10. Ročníku - S. oběžná dráha Země kolem Slunce

figure
figure

Určete pravou anomálii a vzdálenost Země od Slunce po $1/4$ oběžné doby Země kolem Slunce od průchodu Země periheliem. Velká poloosa je $a=1\;\mathrm{AU}$ a excentricita $e=0,0167$.

1. Série 10. Ročníku - 2. alchymistické zrcadlo

Mějme válcovou nádobu se rtutí. Roztočíme ji úhlovou rychlostí $Ω$ kolem rotační osy. Určete ohniskovou vzdálenost zrcadla, které tvoří povrch rtuti.

1. Série 10. Ročníku - 4. překvapení po procitnutí

Představte si, že jdete večer klidně spát a do rána se veškeré vzdálenosti a rozměry všech přemetů zvetší desetkrát, přičemž jejich hmotnost se nezmění. Zanechá tato událost nějaké stopy na vaší existenci? A pokud ano, tak jaké?

1. Série 10. Ročníku - E. výše mého domova hvězd se bude dotýkat

První experimentální úloha letošního ročníku je svým zadaní poměrně jednoduchá, poskytuje však velký prostor pro vaši nápaditost a vynalézavost: Změřte výšku vašeho bydliště co nejvíce způsoby a výsledky porovnejte. Nebojte se odvážných nápadů, originalita řešení bude kladně hodnocena. Spočítejte také nebo alespoň odhadněte chyby měření nezapomínajíce na to, že ve fyzice platí: jedno pozorovaní = žádné pozorovaní!

6. Série 9. Ročníku - 1. gejzír na betoně

Jednoho krásného dne se studentíci na jednom nejmenovaném gymnáziu nudili, a tak si vymysleli zábavu. Do igelitového pytlíku nabrali vodu a vyhodili jej z okna. Na betonovém chodníku to udělalo krásný gejzír. Ale co čert nechtěl – zrovna přišel do třídy profesor fyziky a zeptal se jich: „Z jaké výšky byste museli vyhodit ten pytlík z okna, aby vám ta voda přešla do varu?“ No, a my se vás ptáme na totéž. Můžete zanedbat odpor vzduchu, popřípadě zauvažovat, co by se stalo, kdyby tam odpor vzduchu byl.

6. Série 9. Ročníku - 4. žabák Břéťa

Na rybníce plave čtvercová deska o hmotnosti $M$ a straně $l$ a na jejím okraji sedí žabák Břéťa s tělesnou hmotností $m$. Jakou rychlostí a jakým směrem musí vyskočit, jestliže se chce trefit přesně na druhý konec desky? Předpokládejte, že se deska při odrazu minimálně ponoří, odpor prostředí můžete zanedbat.

5. Série 9. Ročníku - 1. řetízek babičky Julie

figure

Na stole leží stříbrný řetízek po babičce Julii. Část, která je dlouhá $a$, visí přes hranu stolu, zbytek délky $b$ ještě leží na stole, jak je vidět na obrázku. Deska stolu je ve výšce $H$ nad podlahou, vše se nachází v klidu. V čase $t=0$ řetízek uvolníme a ten začne klouzat dolů ze stolu. Za jak dlouho spadne celý řetízek na zem (měřeno od chvíle, kdy se přestane dotýkat stolu)?

5. Série 9. Ročníku - 3. ucpaná roura

figure

V trubce čtvercového průřezu $S$ (viz obrázek) je umístěn hranol se stěnami skloněnými o úhly $α$, $β$. Na obou stranách hranolu je plyn o tlaku $p$. Kterým směrem a s jakým zrychlením se začne hranol pohybovat, jestliže byl původně v klidu?

4. Série 9. Ročníku - 2. opilci v New Yorku

figure

Dva kamarádi se po dlouhém nočním tahu ztratili kdesi ve spleti newyorských streets a avenues. Jak to odpovídá jejich stavu, procházejí ulice po křivce velmi blízké sinusovce s amplitudou $A=5\;\mathrm{m}$ a periodou $T=12{,}6\;\mathrm{m}$. Udržují konstantní rychlost potácení $v=1\;\textrm{m}\cdot \textrm{s}^{-1}$ (ve směru osy ulice). Shodou okolností se v jeden okamžik ocitnou oba ve vzdálenosti $l=27\;\mathrm{m}$ od téže křižovatky, každý však uprostřed jiné ulice (viz obrázek), přičemž oba směřují doleva od směru k průsečíku obou ulic. Určete, v jaké nejmenší vzájemné vzdálenosti se během průchodu křižovatkou ocitnou, předpokládáte-li, že oba směřují stále týmž směrem a jeden druhého si nevšímají.

Cílem této úlohy je, abyste se naučili pracovat se souřadnicemi, takže řešení nemusí být v obecném tvaru, můžete klidně zaokrouhlovat. Výsledky obdržené numericky budou posuzovány rovnocenně analytickému či grafickému řešení.

4. Série 9. Ročníku - 4. drama na schodech

figure

Starostlivá maminka se chystá se svým malým drobečkem na procházku do parku. Vytlačí kočárek ze dveří, zamkne je a teď už na ni čeká jen malá překážka – schody. Postupně zdolává první patro, druhé patro a stále se ne a ne objevit někdo, kdo by jí pomohl. Najednou si ale vzpomene, že nahoře zapomněla láhev se sunarem. Co kdyby se snad její mazlíček na procházce unavil a dostal hlad? Nechá tedy kočárek kočárkem a běží zpět nahoru. Odemkne dveře, jde do kuchyně, vezme láhev a vtom ji přeběhne mráz po zádech, vyrazí studený pot na čele, znovu ji přeběhne mráz po zádech a teprve potom si uvědomí proč. Vždyť nechala stát kočárek jen tak na schodech! (Řešitelé bez představivosti nechť si prohlédnou přiložený obrázek, kde $T$ značí těžiště.) Hrůzou nepříčetná běží záchranit, co se dá. Na vás zbývá dokončit tento příběh, co myslíte, kde nalezne kočárek se svým děťatkem?

4. Série 9. Ročníku - E. ať žije sníh!

Je zima, blíži se jarní prázdniny, a jistě každý z vás se chystá do hor lyžovat, čehož jsme se rozhodli zneužít, a tak vám zadáváme následující úlohu: Změřte koeficient tření lyžaře na sněhu.

K dispozici máte cokoliv, zejména tedy toho lyžaře, lyže (kdo provede měření pro porovnaní zvlášť na běžkách a zvlášť na sjezdovkách, bude mít plus), sjezdovku (fyzikálně řečeno nakloněnou rovinu), měřič času (normálně řečeno stopky) a jiné věci, co vás napadnou a co byste mohli upotřebit. Pokud byste se chtěli vymlouvat, že letos již lyžovat nebudete, není problém tuto úlohu změřit i na rovině. Je jisté, že i ve vaší vesnici (městě, nebo v čem jiném bydlíte) bude alespoň jeden den sníh.

Pozn.: Nezapomeňte, že navoskované lyže na sněhu je krásný případ systému, kde koeficient tření závisí na rychlosti a možná i na povrchu styčné plochy, což můžete ověřit jízdou po jedné lyži. Bohužel však vzhledem k odporu vzduchu a dalším ručivým vlivům budou asi tyto efekty špatně měřitelné (ve vyšší rychlosti sice trochu klesne koeficient tření, zato značně vzroste odpor vzduchu).

3. Série 9. Ročníku - 1. vyhlodaný hranol

figure

Na vodorovné rovině je položen vyhlodaný hranol o hmotnosti $M$ (viz obrázek), který se po ní může bez tření pohybovat. V nejnižším místě leží krychlička o hmotnosti $μ$. Na nakloněné části hranolu leží krychlička o hmotnosti $m$. I malé krychličky se mohou pohybovat po vyhlodaném hranolu bez tření. Jaká musí být splněna podmínka mezi hmotnostmi $M$, $m$, $μ$ a úhlem α, aby se po uvolnění krychličky $m$ krychlička $μ$ začala vůči hranolu $M$ pohybovat?

3. Série 9. Ročníku - 3. Pinocciova čepička

Papa Karlo zhotovil pro Pinoccia čepičku z tenkého plechu ve tvaru kužele o výšce $20\;\textrm{cm}$ a s vrcholovým úhlem $60^\circ$. Bude ale takováto ozdoba držet na jeho hlavě, která má tvar koule o poloměru $15\;\textrm{cm}$ a je dokonale hladká?

3. Série 9. Ročníku - P. vodní kyvadlo

figure

Mějme nádobu tvaru kvádru zanedbatelné hmotnosti o čtvercové podstavě strany $a$ a výšce $2a$. V této nádobě se nachází krychlové vodní těleso. V jaké maximální výšce $h$ ode dna můžeme naši nádobu zavěsit, aby se po zmrznutí vody převrátila? (Viz obrázek 2, který znázorňuje řez nádoby vertikální rovinou procházející těžištěm.) Uvažujte dva případy:

  • nádoba je dokonale tuhá a voda zamrzá ode dna,
  • voda si během zamrzání uchovává stále svůj krychlový tvar, nádoba je tedy dostatečně pružná. Přitom podél stěn led klouže, tedy výška závěsu nad podstavou zůstává konstantní.

2. Série 9. Ročníku - 1. Nezbedkova Nezbedka

figure

Na obrázku 1 plove loďka. Její majitel, známý vynálezce a kutil Nezbeda, vyřešil problém bezvětrného počasí následujícím způsobem: na záď lodi připevnil výkonný fén značky Fukar a nasměroval jej vpřed přímo na malou lodní plachtu. Na vás teď je, abyste usoudili, za jakých podmínek se loďka rozjede vpřed či vzad. Můžete se také zamyslet nad tím, jaké zlepšovací návrhy byste Nezbedovi poradili, aby jeho pohon pracoval za bezvětří co nejefektivněji.

2. Série 9. Ročníku - 3. válcovací stolice

figure

Dva stejné válce o poloměru $R$, jejichž osy jsou rovnoběžné a leží ve vodorovné rovině ve vzdálenosti $a$, rotují opačnými směry. Na tyto válce položíme vodorovně desku délky $2a$ o hmotnosti $m$ tak, že přečnívá vpravo více než vlevo (viz obr. 2). Mezi deskou a válcem působí tření s koeficientem $μ$. Co se bude dít s deskou,

  • pokud jsou obvodové rychlosti stejně veliké,
  • pokud je obvodová rychlost levého válce dvakrát větší než obvodová rychlost pravého?

1. Série 9. Ročníku - P. lokomotivy

figure

Na obrázku je letecký snímek parních lokomotiv s oblaky dýmu, které se pohybují rovnoměrně po přímých rovnoběžných kolejích. Rychlost první parní lokomotivy je $v_{1}=50\;\mathrm{km} \cdot \mathrm{h}^{-1}$, rychlost třetí $v_{3}=70\;\mathrm{km} \cdot \mathrm{h}^{-1}$. Směry rychlostí jsou vyznačeny na obrázku. Jaká je rychlost $v_{2}$ druhé lokomotivy?

6. Série 8. Ročníku - 1. Jupiter a kometa

figure

Trajektorie planety

Kometární rodina Jupiteru vzniká následujícím způsobem (viz. obrázek). Kometa přilétá k Jupiteru z velké vzdálenosti s téměř nulovou počáteční rychlostí. Po opuštění Jupiterova gravitačního pole (přesně sféry gravitačního vlivu Jupitera), má její rychlost (vzhledem ke Slunci) přesně opačný směr než rychlost Jupitera. Poté se pohybuje opět v gravitačním poli Slunce. V jaké vzdálenosti od něj se bude nacházet perihelium dráhy komety a jaká je její oběžná doba (jaká je velikost velké poloosy dráhy komety)? Uvažujte, že Jupiter obíhá kolem Slunce po kružnici o poloměru $R=5,2\;\mathrm{AU}$.

5. Série 8. Ročníku - 1. vesmírná katastrofa

Tři planetky o stejné hmotnosti $M=10^{26}\; \textrm{g}$ jsou umístěny ve vrcholech rovnostranného trojúhelníka o straně $l=100\; \textrm{Gm}$ [gigametry]. Nemajíce počáteční rychlosti nezbývá jim než padat vstříc jisté záhubě. Určete, za jak dlouho se srazí (rozměry planetek zanedbejte).

5. Série 8. Ročníku - P. co ten skokan pořád chce

Chceme-li demonstrovat metodu řešení soustavy rovnic na našem skokanovi, budeme muset přidat další podmínku: dejme tomu, že první dopad na prkno se mu zdál příliš tvrdý; rozhodl se tedy rozkývat prkno natolik (změnit amplitudu kmitů), aby druhá srážka s prknem proběhla se zanedbatelnou vzájemnou rychlostí. Tedy jak hodnota Funkce, tak Derivace (uvedená v minulém díle) byla v okamžik srážky rovna nule. Vašim úkolem je najít potřebnou amplitudu $A_{n}$ a dobu druhého skoku $T_{n}$ (odráží se opět dole).

4. Série 8. Ročníku - 1. částice v magnetickém poli

Nabitá částice vstupuje do prostředí, ve kterém na ni působí odporová síla. Směr této síly je opačný, než směr rychlosti částice, a její velikost je rychlosti přímo úměrná. Než se částice zastaví, urazí v prostředí dráhu $l_{1}=10\;\mathrm{cm}$. Je-li v prostředí navíc homogenní magnetické pole kolmé na směr rychlosti částice, pak se částice zastaví ve vzdálenosti $l_{2}=6\;\mathrm{cm}$ od místa, kde do prostředí vstoupila. V jaké vzdálenosti $l_{3}$ od místa vstupu do prostředí se částice zastaví, když bude magnetické pole dvakrát menší?

4. Série 8. Ročníku - 4. válec kontra zeď

figure

Dřevěný válec o poloměru $R$ a hmotnosti $m$ se valil po podlaze rychlostí $v$ do okamžiku, kdy se zarazil o zeď. O jaký úhel se ještě válec pootočí, než se úplně zastaví? Koeficient tření mezi válcem a stěnou resp. podlahou je $μ$.

3. Série 8. Ročníku - 1. zasněžená

Malý Bobeš přitáhl pod kopec sáňky. Hledí na jeho vrchol, který je o $h$ metrů výše než on a vzdálený (vodorovně) $l$ metrů. Těžké sáňky o hmotnosti $m$ drhnou na čerstvém sněhu s koeficientem tření $f$. Přemýšlí, při jakém tvaru svahu by se dostal nahoru s vynaložením nejmenší práce. Co mu poradíte (dřív než tam zmrzne, filosof jeden)? Zkuste tuto práci pro zvolený tvar svahu také vypočítat.

3. Série 8. Ročníku - E. grant strýčka Skrblíka

Vašim milovaným strýčkem vám byl zadán úkol zjistit, zda jeho památeční rodinná lžička jest skutečně z ryzího hliníku. Vaše experimentální vybavení je však poněkud skromné: kromě uvedené lžíce dostanete k dispozici závaží o známé hmotnosti, dlouhé pravítko, provázek a dva hřebíky, které můžete zatlouct do zárubně dveří. Navíc zde ještě stojí kbelík plný vody. Navrhněte, výpočty podložte a hlavně proveďte měření, při kterém co nejpřesněji s pomocí jmenovaných pomůcek určíte hustotu materiálu lžičky. Uskutečněte dostatečné množství měření a na základě alespoň nějakých kalkulací také odhadněte věrohodnost vámi obdrženého výsledku.

Nápověda: Pokuste se srovnat hmotnost lžíce a závaží zavěšováním na provázek, který jste (s mírným průvisem) natáhli mezi zárubní dveří.

2. Série 8. Ročníku - P. problém liftboye

Liftboy v mrakodrapu si pověsil na stěnu svého výtahu přesné kyvadlové hodiny, aby viděl, kdy mu končí pracovní doba. Doba pohybu výtahu se zrychlením vzhůru a dolů je stejná. Zrychlení taktéž. Co si myslíte: bude mít chlapec pracovní dobu delší, kratší nebo stejnou?

2. Série 8. Ročníku - S. skokan

Skokan na můstku se odrazí z prkna rychlostí $v=5\;\mathrm{m}\cdot \mathrm{s}^{-1}$ kolmo vzhůru v okamžiku, kdy je deska maximálně prohnutá směrem dolů (o $A=30\;\mathrm{cm}$ pod rovnovážnou polohou). Za jak dlouho se opět s deskou srazí, pokud prkno kmitá s periodou $T=0,5\;\mathrm{s}$.

Srovnejte rychlost výpočtu v jednotlivých fázích (hrubé přibližování, dolaďování).

1. Série 8. Ročníku - 1. golf

figure

Model situace

Hráč golfu řeší obtížný úkol. Musí se trefit do jamky ve vzdálenosti $d$ a přitom přestřelit překážku výšky $h$. Překážka překáží ve vzdálenosti $l$ (viz obrázek). Jakou rychlostí $\textbf{v}$ a pod jakým úhlem $α$ musí ten nešťastník odpálit míček? Jak se změní řešení, stojí-li před hráčem překážka, jejíž přední strana je ve vzdálenosti $l_{1}$ a zadní v $l_{2}?$

1. Série 8. Ročníku - 2. Mňága a Žďorp

Mňága vyjíždí na kole rychlostí $15\; \textrm{km}\cdot\textrm{h}^{-1}$ z Postoloprt po přímé silnici do Kožuchova v $8$ hodin ráno a za jeho uchem se v tu chvíli probouzí pilná včela Žofka. Současně z cílové vísky vzdálené $40\; \textrm{km}$ jim naproti startuje Žďorp a nasazuje tempo $25\; \textrm{km}\cdot\textrm{h}^{-1}$. Do okamžiku, než se oba potkají, musí Žofka, která je přeci jen dvakrát rychlejší než Mňága, plnit úkol spojovatelky – donese zprávu od M. k Ž., otočí se a letí zpět. Kolik kilometrů takto nalétá do okamžiku setkání, pokud

  • je bezvětří
  • vane vítr od Kožuchova (podél silnice) o rychlosti $10\; \textrm{km}\cdot\textrm{h}^{-1}$
  • vane vítr kolmo na silnici o stejné rychlosti.

1. Série 8. Ročníku - 4. setrvačnost

V autobuse (jede z pouti a má zavřené nejen dveře, ale i okna) stojí cestující a drží na provázku svůj balónek plný helia. Autobus, který původně stál v klidu, se rozjíždí. Co se stane s balónkem? (Cestující je pevně spojen s autobusem –tj. dobře se drží.) Jakým směrem se balónek pohne? Vysvětlete souvislost se setrvačnou silou! Můžete si to také vyzkoušet.

1. Série 8. Ročníku - E. bungee-jumping

Zajisté jste slyšeli o novém druhu zábavy lidí, kteří si potřebují dokázat, jak snadné je překonat vlastní strach. Z vlastní vůle skočit z výšky třeba $50\; \textrm{m}$ přivázán jen za nohy, není to lákavé? Vaším úkolem by mělo být: laboratorně zkoumat dynamiku tohoto nového sportu (kdy se asi dostane do olympijských her?) a na základě pokusů domácky provedených učinit závěry z toho plynoucí pro člověka přivázaného na takovém laně.

Nejprve si obstaráte kus gumy přiměřené délky. Pak můžete měřit:

  • závislost maximální hloubky $h$ na délce gumy $l$, do níž se závaží hmotnosti $m$ klesne
  • závislost hloubky $h$ na hmotnosti závaží $m$ pro dvě různé délky gumy $l_{1}$, $l_{2}$. Pozor abyste nepřekročili kritickou hmotnost $M_{K}$ z bodu $c$!
  • jaká je kritická hmotnost $M_{K}$ závaží, při němž se guma délky $l$ přetrhne (tento úkol předpokládá, že máte dost experimentálního materiálu a máte též vhodnou gumu – zachovává pružné vlastnosti až do přetržení)

Pro člověka vysícího na takovém laně má značný význam maximální zrychlení na něj působící po čas letu. Pokuste se toto zrychlení určit na základě změřených výsledků.

Přejeme Vám mnoho úspěchů při řešení a hodně zábavy s praskající gumičkou!

6. Série 7. Ročníku - P. redundantní informace

Z Prahy vyjíždí v 7 hodin 30 minut rychlostí 95 km/h po dálnici do Brna černý, pečlivě umytý automobil Tatra 613, ve kterém sedí na zadním sedadle za řidičem bílý pták, velký jako pštros, ale s dlouhým a silným žlutým zobákem. Přibližně každých pět minut pták klovne řidiče do hlavy. Ten si toho sice většinou nevšímá, ale čas od času se rozzuří, popadne složené noviny, které leží na prázdném předním sedadle, zakloní se, levou rukou drží volant a pravou tluče novinami ptáka přes hlavu a křičí: „Nech už toho, ty kreténe! Ty máš opravdu ptačí mozek!“ Pták se krčí na zadním sedadle a ustrašeně vřeští, ale za pět minut klovne řidiče znovu.

Téhož dne v 8 hodin 15 minut vyjíždí z Brna do Prahy rychlostí 70 kilometrů za hodinu kamión s tureckou poznávací značkou. Neveze žádné zboží, v jeho vnitřku se nachází pouze pětačtyřicetiletý docent estetiky B. Je na zadním konci kamiónu připoutaný ke klice dveří a dívá se na divný film, promítaný na plátně, jež je umístěné na druhém konci vozu. Vidí ve filmu sám sebe, jak leží v noci ve své vile s manželkou v posteli a spí; manželka tiše vstává z postele a sestupuje do zahrady, kde na ni vzadu u plotu čekají fantastické nestvůry, jsou to tlusté žáby, velké jako pes, porostlé dlouhou vlnitou srstí, s losími parohy na hlavě a s velkými chlupatými křídly. Na špičkách paroží svítí Eliášův oheň. Žáby obletují ženu, která tu tiše stojí v bílé noční košili, dlouhé chlupy na křídlech jim přitom krásně vlají, olizují ženě jazykem tvář a kňučí radostí jako psi. Žena je něžně hladí po hlavě a tiskne je k sobě, pak se temnou zahradou rychle vrací do vily a uléhá opět do postele. Letos je tomu 20 let, co se docent B. se svou manželkou vzali.

Z Prahy do Brna je to po dálnici 202 km. V kolik hodin a na kolikátém kilometru se oba automobily minou?

Michal Ajvaz: Návrat starého varana, MF, Praha 1991, str. 50–51.

4. Série 7. Ročníku - 1. vláček

Dlouhá vlaková souprava délky $l$ jede po dráze, která z vodorovného úseku přechází ve svah se sklonem $a$. V okamžiku, kdy se vlak zastavil, byla na svahu přesně polovina vagónů. Jaká byla doba, za kterou vyjely tyto vagóny na svah. Tření zanedbejte.

4. Série 7. Ročníku - 2. kužel

figure

Hmotný bod se v tíhovém poli Země pohybuje po vnitřku kuželové plochy s vrcholovým úhlem $2α$, jejíž osa symetrie má svislý směr (viz obr. 1). V čase $t=0$ se částice nachází ve výšce $z_{0}$ a má rychlost $v_{0}$. Tato rychlost má směr tečny ke kružnici na průniku kužele s vodorovnou rovinou $z=z_{0}$.

  • Obíhá-li částice v konstantní výšce $z_{0}$, dokažte, že velikost rychlosti je určena pouze touto výškou a nezávisí na úhlu $α$.
  • Při obecném pohybu určete body obratu $z_{1}$ a $z_{2}$, tj. maximální a minimální výšku, do které částice vystoupí.

Diskutujte trajektorii částice v soustavě spojené s částicí a soustavě spojené se Zemí. Tření neuvažujte.

2. Série 7. Ročníku - P. závodník

figure
figure

V důsledku malého koeficientu tření pneumatik se automobil jedoucí po ledu nemůže pohybovat se zrychlením větším než $a=0,5\;\mathrm{m}\cdot \mathrm{s}^{-2}$. Podle pravidel závodu se řidič musí dostat z bodu A do B ve vzdálenosti $x=375\;\mathrm{m}$, přičemž počáteční rychlost $v=10\;\mathrm{m}\cdot \mathrm{s}^{-1}$ jest ve směru kolmém ke spojnici AB. Určete nejmenší čas, za který toho lze dosáhnout. Jak se změní výsledek, bude-li cílem bod C (viz obr. 1), vzdálenost B a C je $y=200\;\mathrm{m}$.

1. Série 7. Ročníku - 4. korálek

figure

Na tyči zanedbatelné hmostnosti o celkové délce $4a$ jsou navlečeny ve vzdálenosti $a$ od osy otáčení dvě koule o hmotnosti $m$ (viz obr. 3). Na obou koncích tyče jsou umístěny dokonale pružné odrazné destičky. Tyč je roztočena na úhlovou rychlost $ω_{0}$, a poté jsou uvolněny obě koule. Za předpokladu, že se tyč nadále pohybuje volně a bez tření, určete:

  • Po jaké trajektorii se budou pohybovat obě kuličky vzhledem k pozorovateli v inerciální soustavě.
  • Jak se bude měnit úhlová rychlost soustavy $ω$ v závislosti na čase.
  • Jak by se změnili výsledky předešlých úloh, kdybychom udržovali (např. pomocí motoru) úhlovou rychlost stále na hodnotě $ω_{0}?$

1. Série 7. Ročníku - P. fošna

figure

Čtvercová deska o straně délky $a$ (viz obr. 4) je upevněna na ose procházející jejím středem ve směru rovnoběžném s jednou ze stran. Ve vzdálenosti $c$ od této osy je na ní položeno malé tělísko hmotnosti $m$. Deska začne kmitat s nevelkou amplitudou kolem vodorovné polohy s frekvencí $ω$. Určete dobu (je mnohem větší než perioda kmitů), za kterou tělísko spadne z desky, je-li koeficient tření mezi deskou a tělískem $μ$.

5. Série 2. Ročníku - 1. závažíčko na kouli

Na vrcholu koule poloměru $R$ leží závažíčko, které se v čase nula začne pohybovat. V jaké výšce a kdy se oddělí od povrchu koule?

4. Série 2. Ročníku - 1. vozík

figure

Model tří těles

Mějme soustavu vyobrazenou na obrázku. Jakou silou $\textbf{F}$ musíme působit, aby se těleso II nepohybovalo vůči tělesu I. Máte zadané hmotnosti $m_{I}$, $m_{II}$ a $m_{III}$ všech tří těles a veškerá tření zanedbávejte.

4. Série 2. Ročníku - 2. mouchy

Postavme na váhu uzavřenou sklenici s několika muškami. Kdy nám váha ukazuje více, když mušky ve sklenici

  • létají
  • usedly
  • v obou případech váha ukazuje stejně

Proč?

3. Série 2. Ročníku - 1. skateboardista

figure

Skateboardista

Z jaké výšky se může pustit jezdec na skateboardu po dráze na obrázku, aby to nebylo zdraví škodlivé?

3. Série 2. Ročníku - 3. síla přitažlivosti

Kdyby celý prostor byl prázdný mimo dvou kapek vody, budou se tyto kapky přitahovat podle Newtonova gravitačního zákona. Nyní předpokládejme, že celý prostor je vyplněný vodou s výjimkou dvou bublin (obrázek). Jak se bubliny budou pohybovat?

3. Série 2. Ročníku - 4. jak hluboká je studna?

Hloubku studny chceme určit s relativní chybou $2\; \%$ tak, že do ní pustíme kámen a měříme dobu, za kterou uslyšíme pád kamene na dno od jeho vypuštění. Při jaké hloubce studny už musíme uvažovat rychlost šíření zvuku?

2. Série 2. Ročníku - 3. jak rychlá je lokomotiva?

figure

Snímek lokomotiv

Na obrázku je letecký snímek parních lokomotiv s oblaky páry pohybujících se rovnoměrně po přímých rovnoběžných kolejích. Rychlost první lokomotivy je $v_{1}=50\;\mathrm{km}\cdot \textrm{h}^{-1}$, rychlost druhé $v_{2}=70\;\mathrm{km}\cdot \textrm{h}^{-1}$. Směry rychlostí jsou vyznačeny na obrázku. Jaká je rychlost třetí lokomotivy?

2. Série 2. Ročníku - E. homole

Sypeme-li přášek (suchý písek, mouku apod.) volně na jedno místo, vznikne kužel s vrcholovým úhlem $α$. Co lze o tomto úhlu pokusně zjistit? Umíte výsledek nějak zdůvodnit?

1. Série 2. Ročníku - 1. člověk na voru

figure

Člověk stojí uprostřed voru na vodní hladině a v určité vzdálenosti je tyč, kterou chce chytit. Jak daleko může být tyč, aby k ní po voru mohl dojít? Zanedbejte nejdříve tření mezi vorem a vodou. Jak se situace změní bez tohoto předpokladu? Hmotnost člověka je $75\; \textrm{kg}$, hmotnost voru $50\; \textrm{kg}$.

1. Série 2. Ročníku - 2. Ptolemaios a Koperník

Vraťme se ke středověkému sporu. Roku 1543 ve svém díle De Revolutionibus orbium coelestium Mikuláš Koperník předkládá svůj heliocentrický výklad světa, kterým popírá zažitou geocentrickou představu zformulovanou nejjasněji Ptolemaiem v díle Megalé Syntaxis v 2. století n. l. Umožněme myšlenkově oběma astronomům setkání, na kterém by mohli obhajovat svůj názor.

Koperník: „V mém výkladu je Slunce nepohyblivé a kolem něj se pohybují všechny planety včetně Země po kruhových drahách, což je mnohem jednodušší než popis pohybu planet v geocentrické představě.“ (Eliptické dráhy přinesl až o 60 let později Kepler.)

Co na to Ptolemaios? Kdyby byl hodně chytrý, odpověděl by třeba toto: „Tvůj názor je odvážný, mladíku, (Koperník byl o 1400 let mladší), ale myslím, že nepřináší nic nového, jenom zmatek v ustálených představách. I kdyby podle Tebe Země obíhala kolem Slunce, když se postavíme na Zemi, což stále děláme, uvidíme, že Slunce se pohybuje relativně vůči Zemi a to po kružnici. Pohyb je relativní!“ (Vskutku, pokud se nám pohyb jednoho tělesa z druhého zdá kruhový, tak opačně z prvního se pohyb druhého bude zdát opět kruhový – ověřte si to.) „Zapomeňme třeba na ostatní planety a mějme jen Slunce a Zemi. Můžeš i pak tvrdit, že Země obíhá kolem Slunce a ne naopak?“

Koperník: „Ano, i pak. Slunce stojí vůči stálicím, vůči hvězdám, a Země ne.“

Ptolemaios: „A proč by se stálice také nemohly pohybovat kolem Země? Copak Země středem vesmíru není lákavá myšlenka?“

Vidíme, že pan Koperník se dostává do úzkých. Vždyť Ptolemaios argumentuje tak revolučními a přitažlivými myšlenkami, jako že pohyb je relativní. My bychom se však přiklonili spíš ke Koperníkovi. Máme proti němu ale výhodu – víme, s čím přišel o necelých 150 let později pan Newton. Přizvěme ho k debatě. Jakými slovy vyřeší spor obou astronomů a přesvědčí Ptolemaia, zatím ale neřekneme. Co byste na místě Newtona řekli vy?

1. Série 2. Ročníku - 3. držák

figure

Držák na zavěšení lehkých břemen, který lze lehce připevnit v libovolné výšce, je často velmi praktický. Jeden takový držák je na obrázku i s rozměry. Může se vertikálně posunovat po tyči a udržuje se v určité úrovni silou tření. Koeficient statického tření mezi držákem a tyčí je $0,30$, tíha závaží zavěšeného ve vzdálenosti $x$ od tyče je $50$krát větší než tíha držáku. Jaká je minimální hodnota $x$, při které držák ještě nesklouzne dolů?

4. Série 1. Ročníku - 4. netradiční ohřívání čaje

Kolik nábojů je zapotřebí k uvaření šálku čaje? K dispozici máte ocelovou polní konvičku o hmotnosti $4\; \textrm{kg}$ a samopal. Náboje mají hmotnost $16\; \textrm{g}$ a rychlost $700\; \textrm{m}\cdot \textrm{s}^{ -1}$.

3. Série 1. Ročníku - 1. film

Filmový pás zachycuje padající těleso se zrychlením směrem dolů. Pustíme-li film pozpátku, bude mít zrychlení tělesa směr

  • nahoru
  • dolů

Zdůvodněte.

3. Série 1. Ročníku - 2. planeta liliputánů

Představte si, že do rána se všechny vzdálenosti a rozměry předmětů zvětší desetkrát, přičemž jejich hmotnost se nezmění. Jaké by byly důsledky?

3. Série 1. Ročníku - 3. tramvaj

Ve stojící tramvaji visí u svislé desky na niti délky $l$ citrón o hmotnosti $m$ (předpokládáme, že rozměry citrónu jsou velmi malé v porovnání s délkou niti). Tramvaj se rozjede se zrychlením $a$, které můžeme považovat za konstantní. Spočtěte, kam až toto kyvadlo vykývne (jaký maximální úhel bude svítat s deskou) a kdy citrón opět ťukne do desky.

3. Série 1. Ročníku - E. přetahovaná

Na kulatý sloup či tyč je namotáno několik závitů lana. Z jedné strany drží lano třeba malé dítě a táhne za něj malou silou $F_{d}$ (třeba $1\; \textrm{N}$). Z druhé strany táhne za lano obr. Jak velkou silou může obr za lano táhnout, aniž by dítě na druhém konci „přetáhl“? Předpokládáme, že sloup se nemůže otáčet.

Zkuste výsledek odvodit teoreticky, ale zejména vyšetřete daný problém experimentálně. (Jaká je závislost síly na materiálech sloupu a lana, velikosti sloupu, počtu závitů – a má např. smysl „neceločíselný“ počet závitů? Atd., atd. Obra i dítě můžete nahradit jinými pomůckami, sloup také.)

2. Série 1. Ročníku - 1. silák

figure

Uvolněné lano

figure

Vodorovně napnuté lano

Za devatero horami je země, v níž se síla měří v jednotkách zvaných $\textrm{dag}$. Na pouti tam silák napíná oběma rukama lano, na němž je zavěšen telefonní seznam o tíze $10\; \textrm{dagů}$. (Kdyby silák držel oba konce provazu u sebe, napětí v obou částech lana by bylo $5\; \textrm{dagů}$.) Jaké bude napětí v obou částech lana, když silák roztáhne lano do vodorovné polohy?

  • $5\; \textrm{dagů}$
  • $10\; \textrm{dagů}$
  • $20\; \textrm{dagů}$
  • více než milión $\textrm{dagů}$

2. Série 1. Ročníku - 2. čluny

figure

Pohled na čluny

Obrázek ukazuje dva čluny pohybující se po hladině jezera. Z obálky vln soudíme, že

  • obě lodi plují větší rychlostí, než je rychlost povrchových vln, přičemž loď I pluje rychleji než loď II
  • loď I pluje rychleji než loď II, ale nemusí nutně plout větší rychlostí, než je rychlost povrchových vln
  • ani a), ani b)

2. Série 1. Ročníku - 3. Křemílek

figure

Miska s Křemílkem a kuličkou

Křemílek chce dostat z misky těžkou kuličku. Stěny misky jsou však příliš strmé, aby ji vykulil přímo. Svými silami

  • může dostat kuličku ven. (Jak?)
  • nemůže dostat kuličku ven.

2. Série 1. Ročníku - S. odpor působící na auto

Spočtěte, jak bude s časem klesat rychlost auta brzděného jen odporem vzduchu. Auto jede po rovině na neutrál a zanedbáme valivé tření kol atd. – vše kromě odporu vzduchu.

Návod: Síla, kterou je auto brzděno, je v daném případě zhruba úměrná druhé mocnině jeho rychlosti: $F_{brzd}=C\cdot v$. (Pro běžný automobil lze odhadnout $C=(1–2)\; \textrm{m}^{-2}\cdot \textrm{s}$.) Uvažte, že během krátkého časového intervalu $Δt$ se síla působící na automobil příliš nezmění a jeho pohyb tedy můžeme brát jako rovnoměrně zpomalený. Celkovou změnu rychlosti za delší čas dostaneme poskládáním změn v jednotlivých „kouscích“ $Δt$.

Problém tak lze velmi dobře simulovat na mikropočítači, ale můžete využít i obyčejnou kalkulačku a hodnoty psát na papír, vynášet do grafu apod. Úlohu si můžete i rozšířit a počítat též ujetou dráhu, případně uvažovat změněné podmínky: jízdu z kopce či do kopce, jízdu pod vodou ($Cρ_{prostředí}$), vynalézavosti se meze nekladou.

1. Série 1. Ročníku - 2. antiraketa

figure

Model nádoby

Uvažujme nádobu s otvorem dle obrázku. Uniká-li stlačený vzduch z nádoby ven, nádoba se pohybuje. Jde o princip analogický raketovým motorům. Představme si nyní opačnou situaci. Nádobu, v níž bylo vakuum, umístěnou ve vzduchu, který do nádoby proudí malým otvorem. Nádoba se bude pohybovat:

  • doleva
  • doprava
  • nebude se pohybovat

1. Série 1. Ročníku - E. odpor vzduchu

Pohybuje-li se těleso v kapalném nebo plynném prostředí, působí na něj prostředí odporující silou, závislou na rychlosti tělesa. Navrhněte nějakou jednoduchou metodu (realizovatelnou doma, ve škole atp.), kterou by bylo možno alespoň přibližně určit závislost rychlosti tělesa pohybujícího se ve vzduchu. Navržené experimenty proveďte a zhodnoťte výsledky.

Návod: Předpokládejte závislost tvaru $F = av^{b}$.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz