Vyhledávání úloh

astrofyzika (19)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (15)gravitační pole (12)hydromechanika (19)jaderná fyzika (5)kmitání (14)magnetické pole (6)matematika (31)mechanika hmotného bodu (68)mechanika plynů (20)mechanika tuhého tělesa (30)molekulová fyzika (11)geometrická optika (16)vlnová optika (6)ostatní (20)relativistická fyzika (8)statistická fyzika (11)termodynamika (28)vlnění (13)

(3 body)4. Série 31. Ročníku - 2. autisti

Kolik nejméně dětí by muselo roztočit svůj fidget spinner, aby se tak den na Zemi prodloužil o $1 \mathrm{ms}$? Všechny neznámé veličiny odhadněte.

(12 bodů)4. Série 31. Ročníku - E. tíha struny

Změřte délkovou hustotu struny, kterou vám měla přijít poštou společně se zadáním. Strunu ale nesmíte vážit.

Nápověda: Zkuste strunu rozkmitat.

(7 bodů)3. Série 31. Ročníku - 4. upuštěná propiska

Propisku (tuhou tyč) upustíme na stůl tak, že během svého letu svírá úhel $\alpha $ s vodorovnou rovinou. Jakou rychlostí dopadne její druhý konec (ten, co se stolu dotkne jako druhý), jestliže jsme těžiště upustili z výšky $h$? Všechny srážky jsou nepružné a tření mezi stolem a koncem propisky dostatečně velké.

Bonus: Spočítejte, jaký musíme zvolit úhel $\alpha$, aby druhý konec dopadl s co nejvyšší rychlostí. Pro jaké výšky se vyplatí propisku naklonit?

(6 bodů)1. Série 31. Ročníku - 3. oběšený úhelník

Máme homogenní úhelník ve tvaru L o stranách délek $b,c$. Je volně zavěšen v železničním vagóně za konec jedné strany tak, že jeho vrchol míří ve směru jízdy vagonu. S jakým zrychlením $a$ se musí vagon pohybovat, aby spodní strana úhelníku byla rovnoběžná se směrem jízdy? Relativistické jevy neuvažujte.

Bonus: Relativistické jevy uvažujte.

Autor je neznámý, asi se oběsil.

(12 bodů)1. Série 31. Ročníku - E. pružnost špejle

figure

Změřte průhyb špejle položené na jejích koncích v závislosti na síle působící na jejím středu (viz obrázek).

Mišo se koukal na jeřáb.

1. Série 11. Ročníku - 2. zlaté sloupy

Dva identické zlaté sloupy výšky 200 m a průřezu 1 dm^{2} jsou umístěny vedle sebe. Jeden z nich je zavěšený a druhý stojí na podložce, oba mají stejnou teplotu 0 °C. Oběma dodáme teplo 5\cdot 10^{6} kJ. Budou mít potom stejnou teplotu? Jestliže ne, odhadněte, o kolik se jejich teplota bude lišit. Potřebné údaje si najděte v tabulkách, tepelnou výměnu s okolím zanedbejte.

1. Série 11. Ročníku - 3. slepičí problém

Slepice se po obědě (12:00) chce dostat do kurníku. Neumí však létat, a jelikož žebřík po stěně kurníku klouže, začne bezradně běhat kolem něj. V kolik hodin se do kurníku dostane, když každou hodinu běhání shodí 40 g a ve 14 hodin hodlá snést vajíčko? Ve 12:00 váží slepice $m=1,7\;\mathrm{kg}$, vajíčko má hmotnost $m_{v}=30g$ a žebřík $M=5\;\mathrm{kg}$. Výška kurníku nad dvorkem je $h=0,85\;\mathrm{m}$, sklon žebříku $α=25°$, součinitel smykového tření mezi kurníkem a žebříkem i mezi dvorkem a žebříkem je stejný: $f=0,7$.

1. Série 11. Ročníku - 4. grant strýčka Skrblíka

figure

Zlepsovak 1

figure

Strýček Skrblík se jednou doslechl o perpetuech mobile a vytušil příležitost, jak ještě více zbohatnout. Vypsal grant na vymýšlení „věčných strojů“, ale jediní, kdo se přihlásili, byli jeho synovci. Přinesli strýčkovi následující tři nápady:

  • Základem prvního perpetua je válec, který je dutý, vodotěsný a je upevněn v ose na valivých ložiscích. Obrázek. nám objasní funkčnost stroje. Na obě části válce sice působí tíhová síla $G$, ale část $B$ je vůči části $A$ válce nadlehčována vztlakovou silou $V$ dle Archimédova zákona. Válec se bude otáčet a jeho rotační energii převedeme na elektrickou energii.
  • Pokud zahřejeme kapalinu, zvětší svůj objem. Zároveň víme, že kapalina je nestlačitelná. Proto budeme kapalinu zahřívat a ochlazovat, změnu jejího objemu převedeme na mechanickou energii a tu na energii elektrickou. Část takto obdržené energie využijeme na zahřívání kapaliny (ochlazení kapaliny zajistí okolní prostředí, odborně „lázeň“). Zbytek energie roztočí stroje ve Skrblíkových továrnách.

* Do nádoby s vodou je zasunuta kapilára. Díky kapilárním jevům voda naplní celou kapiláru a z horního zahnutého konce odkapává dolů, jak je to vidět na obrázku. Dole je umístěna vodní turbína, která je roztáčena padající vodou, a tak může konat práci.

Strýček se nadšeně pustil do výroby těchto strojů, jaké však bylo jeho zklamání, když zjistil, že ani jediný z nich nefunguje. Od té doby už o žádných „perpetech“ nechce ani slyšet.

Na vás teď je, drazí řešitelé, abyste se pokusili vysvětlit, proč žádný z nápadů synovců strýčka Skrblíka nemůže fungovat jako perpetuum mobile.

1. Série 10. Ročníku - 1. stojánek na víno

figure

Firma Strýček Skrblík s. r. o. zaplavila domací i zahraniční trhy geniálním výrobkem – dřevěným stojánkem na víno, jehož podobu si můžete prohlédnout na obrázku. Bude tento stojánek funkční? Závisí stabilita systému stojánek–láhev vína na velikosti a tvaru láhve či na množství moku v láhvi obsaženém? A pokud ano, tak jak?

4. Série 9. Ročníku - 3. stvoření hvězd

Podle jedné z teorií vznikají hvězdy z oblaku mezihvězdné látky (kosmického prachu) smršťováním pod vlivem gravitačních sil. Určete dobu, za jakou se může zformovat hvězda z obrovského kulového oblaku kosmického prachu o hustotě $ρ=2\cdot 10^{–17}\;\textrm{kg}\cdot \textrm{m}^{–3}$. Můžete předpokládat, že se během smršťování částečky hmoty nepředbíhají a na začátku smršťování měly nulové rychlosti (oblak nijak nerotoval, nebyly v něm víry apod.). Zanedbejte také rozměry vzniknuvší hvězdy vůči počáteční velikosti oblaku.

2. Série 9. Ročníku - 3. válcovací stolice

figure

Dva stejné válce o poloměru $R$, jejichž osy jsou rovnoběžné a leží ve vodorovné rovině ve vzdálenosti $a$, rotují opačnými směry. Na tyto válce položíme vodorovně desku délky $2a$ o hmotnosti $m$ tak, že přečnívá vpravo více než vlevo (viz obr. 2). Mezi deskou a válcem působí tření s koeficientem $μ$. Co se bude dít s deskou,

  • pokud jsou obvodové rychlosti stejně veliké,
  • pokud je obvodová rychlost levého válce dvakrát větší než obvodová rychlost pravého?

5. Série 8. Ročníku - 3. Ondrova stavebnice

Malý Ondra je na svůj věk velice zvídavý chlapec a místo hraní si s autíčky studuje takřka fyzikálně svět. Ve své stavebnici nalezl dřevěnou kouli a válec o stejném průměru i ze stejného materiálu a jal se dělat pokusy. Vhrnul kouli a válec (bez roztočení, viz obrázek) rychlostí $v_{0}$ po podlaze a sledoval, na jaké rychlosti $v$ se pohyb těles ustálí. Byl velice překvapen, když zjistil, že jedno z těles je rychlejší než druhé. Rozeberte teoreticky jeho „experimentální“ zjištění a určete konečné rychlosti těles. Uvažujte pouze smykové tření s koef. $μ$, valivé tření zanedbejte.

5. Série 8. Ročníku - P. co ten skokan pořád chce

Chceme-li demonstrovat metodu řešení soustavy rovnic na našem skokanovi, budeme muset přidat další podmínku: dejme tomu, že první dopad na prkno se mu zdál příliš tvrdý; rozhodl se tedy rozkývat prkno natolik (změnit amplitudu kmitů), aby druhá srážka s prknem proběhla se zanedbatelnou vzájemnou rychlostí. Tedy jak hodnota Funkce, tak Derivace (uvedená v minulém díle) byla v okamžik srážky rovna nule. Vašim úkolem je najít potřebnou amplitudu $A_{n}$ a dobu druhého skoku $T_{n}$ (odráží se opět dole).

4. Série 8. Ročníku - 4. válec kontra zeď

figure

Dřevěný válec o poloměru $R$ a hmotnosti $m$ se valil po podlaze rychlostí $v$ do okamžiku, kdy se zarazil o zeď. O jaký úhel se ještě válec pootočí, než se úplně zastaví? Koeficient tření mezi válcem a stěnou resp. podlahou je $μ$.

3. Série 8. Ročníku - E. grant strýčka Skrblíka

Vašim milovaným strýčkem vám byl zadán úkol zjistit, zda jeho památeční rodinná lžička jest skutečně z ryzího hliníku. Vaše experimentální vybavení je však poněkud skromné: kromě uvedené lžíce dostanete k dispozici závaží o známé hmotnosti, dlouhé pravítko, provázek a dva hřebíky, které můžete zatlouct do zárubně dveří. Navíc zde ještě stojí kbelík plný vody. Navrhněte, výpočty podložte a hlavně proveďte měření, při kterém co nejpřesněji s pomocí jmenovaných pomůcek určíte hustotu materiálu lžičky. Uskutečněte dostatečné množství měření a na základě alespoň nějakých kalkulací také odhadněte věrohodnost vámi obdrženého výsledku.

Nápověda: Pokuste se srovnat hmotnost lžíce a závaží zavěšováním na provázek, který jste (s mírným průvisem) natáhli mezi zárubní dveří.

2. Série 8. Ročníku - P. problém liftboye

Liftboy v mrakodrapu si pověsil na stěnu svého výtahu přesné kyvadlové hodiny, aby viděl, kdy mu končí pracovní doba. Doba pohybu výtahu se zrychlením vzhůru a dolů je stejná. Zrychlení taktéž. Co si myslíte: bude mít chlapec pracovní dobu delší, kratší nebo stejnou?

6. Série 7. Ročníku - 3. bycikl

Bicykl je neobvyklý tím, že jeho přední kolo je menší než zadní. Diskutujte, zda závisí výkon, který můžeme získat z alternátoru, na umístění na předním či zadním kole, případně na konkrétní poloze.

6. Série 7. Ročníku - 4. kámen

figure

O kámen, vystupující do výšky $h$ nad hladinu vody, se jedním koncem opírá tenká deska délky $l$, která je částečně ponořena do vody. (viz obr. 3) Při jakém minimálním koeficientu tření mezi deskou a kamenem bude deska v rovnováze? Hustota dřeva je $ρ$, hustota vody $ρ_{0}$.

5. Série 7. Ročníku - 1. závod láhví

Položíte-li na nakloněnou rovinu dvě láhve, jednu prázdnou a jednu plnou, která z nich se bude kutálet rychleji (jsou to téměř válcové nádoby, osa symetrie kolmo na spádnici)? Pohyb na nakloněné rovině uvažujte bez tření a podkluzování. Přechází-li rovina v hrubší vodorovnou plochu, která z nádob po ní dojede dál? A uvedeme-li je na úpatí nakloněné roviny prudce do pohybu směrem vzhůru, která vyjede výše?

5. Série 7. Ročníku - 3. tyč o stůl opřená

figure

Část parket v obývacím pokoji je tak naleštěna, že po ní předměty kloužou se zanedbatelným třením. Pokoušíme se zde svisle postavit dvoumetrovou dřevěnou tyč, ale když už se nám to skoro podaří, dolní konec podklouzne a tíhová síla uvede tyč do pohybu. Padá volně tak, že její dolní konec klouže po podlaze. Jak musela minimálně být vzdálen deska stolu ve výšce 1 m, aby do ní tyč neuhodila (hrana stolu je kolmo na rovinu pádu tyče)?

Kdyby stůl stál naopak na druhé straně, jak by musel být daleko, aby tyč pod něj právě zajela (příčka mezi nohami stolu je ve výšce 0,5 m – viz obr. 1). Problém, zvláště jeho druhou část, je možné (a snadnější) řešit graficky, ať už s použitím počítače, nebo bez něj.

4. Série 7. Ročníku - 3. nešikovný cyklista

Roztržitý cyklista nezpozoroval, že v plné rychlosti najel do betonové zídky stojící kolmo k jeho dráze. Jakou nejvyšší rychlostí mohl jet, když nedošlo k deformaci ráfku.

4. Série 7. Ročníku - E. moment setrvačnosti smetáku

V této experimentální úloze je našim záměrem, abyste si všichni své navržené postupy také prakticky vyzkoušeli. Vymyslete a proveďte co nepřesnější metodu měření momentu setrvačnosti kuchyňského smetáku (s dlouhou násadou a příčkou na konci) vzhledem k ose rovnoběžné s násadou i ke kolmé na ni (procházející těžištěm). Pokuste se odhadnout přesnost vašeho měření.

3. Série 7. Ročníku - 1. hrabeme se v motoru

Při provozu zážehového motoru automobilu dochází k opotřebení vnitřních stěn válců. Zdůvodněte, v kterých místech válce bude jeho opotřebení největší. A jak je tomu u jiných pístových strojů, např. kompresoru?

1. Série 7. Ročníku - 2. gramofonová přenoska

Raménko s gramofonovou přenoskou je uchyceno v čepu a vyváženo závažím. Pokuste se zdůvodnit proč je celá soustava uspořádána tímto způsobem. Navrhněte velikost a umístění závaží, je-li hmotnost přenosky 15 g, tuhost jehly ve vertikálním směru 80 N\cdot m^{−1} a její vzdálenost od čepu je asi 200 mm, víte-li, že maximální přípustná síla, jíž může jehla tlačit na desku je 0,02 N. Hmotnost ramena přenosky zanedbejte.

1. Série 7. Ročníku - 4. korálek

figure

Na tyči zanedbatelné hmostnosti o celkové délce $4a$ jsou navlečeny ve vzdálenosti $a$ od osy otáčení dvě koule o hmotnosti $m$ (viz obr. 3). Na obou koncích tyče jsou umístěny dokonale pružné odrazné destičky. Tyč je roztočena na úhlovou rychlost $ω_{0}$, a poté jsou uvolněny obě koule. Za předpokladu, že se tyč nadále pohybuje volně a bez tření, určete:

  • Po jaké trajektorii se budou pohybovat obě kuličky vzhledem k pozorovateli v inerciální soustavě.
  • Jak se bude měnit úhlová rychlost soustavy $ω$ v závislosti na čase.
  • Jak by se změnili výsledky předešlých úloh, kdybychom udržovali (např. pomocí motoru) úhlovou rychlost stále na hodnotě $ω_{0}?$

5. Série 2. Ročníku - 1. závažíčko na kouli

Na vrcholu koule poloměru $R$ leží závažíčko, které se v čase nula začne pohybovat. V jaké výšce a kdy se oddělí od povrchu koule?

3. Série 2. Ročníku - 2. klubíčko

Klubíčko s koncem připeněným k začátku nakoněné roviny se kutálí bez tření s podložkou a přitom se rozmotává. Co se při tom děje s energií klubíčka?

4. Série 1. Ročníku - 3. šílená Země

Jak by byl dlouhý den, kdyby se Země otáčela takovou rychlostí, že by se na rovníku kompenzovala odstředivá síla se silou gravitační? Jaké důsledky by tyto podmínky měly pro pohyb těles v různých zeměpisných šířkách (např. pro střelu pohybující se rychlostí $3000\; \textrm{m}\cdot \textrm{s}^{ -1}$ na dráze $6\; \textrm{km}$ ve směru poledníku)? Měla by Země tendenci se deformovat? Jak a proč? Uveďte další zajímavé důsledky.

2. Série 1. Ročníku - 4. pružiny

figure

Model pružin

Pohrajme si s dvěma stejně dlouhými, ale různě tuhými pružinami. (Jejich tuhosti označíme $k_{1}$ a $k_{2}$.) Když je spojíme (viz obrázek), chovají se dohromady jako jediná pružina? Jaká je tuhost $k_{výsl}$ této „výsledné“ pružiny při spojení vedle sebe a jaká při spojení za sebou?

2. Série 1. Ročníku - E. domino

K této úloze budete potřebovat kostičky domina. Postavte si řadu těchto kostiček za sebou. Ťuknete-li lehce do krajní kostičky, začne padat, porazí druhou, ta třetí… Vidíme, že řadou kostiček bude probíhat „vlna“. Experimentujte s touto soustavou.

Změřte rychlost šíření této vlny v závislosti na vzdálenosti kostiček. Zkuste měnit další podmínky vašeho experimentu (např. nakloňte rovinu, na níž kostičky stojí, změňte materiál podložky – hladký, drsný – atd.). Není-li pro vás dostupné domino, zkuste použít třeba krabičky od sirek či jiné vhodné objekty.

Snažte se výsledky fyzikálně komentovat, eventuelně i teoreticky vysvětlit.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz