Vyhledávání úloh

astrofyzika (6)biofyzika (1)chemie (1)gravitační pole (1)hydromechanika (3)kmitání (4)matematika (8)mechanika hmotného bodu (6)mechanika plynů (3)mechanika tuhého tělesa (2)molekulová fyzika (1)geometrická optika (5)ostatní (6)relativistická fyzika (1)statistická fyzika (7)termodynamika (5)vlnění (4)

(3 body)2. Série 31. Ročníku - 1. Zuběnka

Jak velké skladovací prostory by musela mít Víla Zubnička, aby mohla skladovat všechny mléčné zuby všech dětí? Resp. jakým tempem by její nároky na uskladnění rostly? Za jakou dobu by teoreticky měla ve svých skladech většinu zásob fosforu na Zemi?

(12 bodů)2. Série 31. Ročníku - E. sypká

Změřte sypný úhel alespoň 2 látek běžně používaných v kuchyni (např. mouka, cukr, sůl apod.).

(10 bodů)2. Série 31. Ročníku - S. derivace a Monte Carlo integrace

 

  1. Vykreslete závislost chyby na velikosti kroku pro metodu odvozenou pomocí Richardsonovy extrapolace v textu seriálu. Jaký je optimální krok a minimální chyba? Porovnejte s centrovanou a dopřednou diferencí. Jako derivovanou funkci použijte $\exp(\sin(x))$ v bodě $x=1$.
    Bonus: Vypočtěte pro tuto metodu teoretickou velikost optimálního kroku pomocí odhadu chyb.
  2. Na webu se nachází soubor s experimentálně zjištěnými $t$, $x$ a $y$ souřadnicemi poloh hmotného bodu. Pomocí numerické derivace nalezněte časovou závislost složek rychlosti a zrychlení a vyneste obě závislosti do grafu. Jaký fyzikální děj bod nejspíše konal? Numerickou metodu si zvolte sami, svoji volbu ale odůvodněte.
    Bonus: Existuje v tomto případě přesnější varianta získání rychlosti a zrychlení, než přímočará aplikace numerické derivace?
  3. Máme zadán integrál $\int _0^{\pi } \sin ^2 x\,\d x$.
    1. Nalezněte hodnotu integrálu z geometrické úvahy za pomoci Pythagorovy věty.
    2. Nalezněte hodnotu integrálu pomocí Monte Carlo simulace. Určete směrodatnou odchylku výsledku.
      Bonus: Vyřešte Buffonovu úlohu ze seriálu (odhad hodnoty čísla $\pi$) pomocí MC simulace.
  4. Nalezněte vztah pro výpočet objemu šestidimenzinální koule pomocí metody Monte Carlo.
    Nápověda: Pythagorovu větu lze využít k měření vzdáleností i ve vyšších dimenzích.

Data k numerické derivaci

(10 bodů)1. Série 31. Ročníku - S. Rozjezdová

 

  1. Upravte výraz $\sqrt {x+1}-\sqrt {x}$ tak, aby nebyl náchylný k problémům cancellation, ordering a smearing. Ke kterým z těchto problémů byl původně náchylný a proč? Jaký je rozdíl ve výsledku původního a opraveného výrazu, pokud jej vyčíslíme v double precision pro $x=1{,}0 \cdot 10^{10}$?
  2. Popište funkci následujícího kódu. Jaký je rozdíl mezi funkcemi a() a b()? Pro jaké hodnoty x je lze použít? Nebojte se kód spustit a hrát si s hodnotou proměnné x. Určete také asymptotickou časovou složitost programu v závislosti na proměnné x.
    def a(n):
      if n == 0:
        return 1
      else:
        return n*a(n-1)
    def b(n):
      if n == 0:
        return 1.0
      else:
        return n*b(n-1)
    x=10
    print("{} {} {}".format(x, a(x), b(x)))
  3. Označme $o_k$ a $O_k$ obvod vepsaného a opsaného pravidelného $k$-úhelníku ke kružnici. Pak pro ně platí rekurentní vztahy \[\begin{equation*} O_{2k}=\frac {2o_k O_k}{o_k + O_k} ,\; o_{2k}=\sqrt {o_k O_{2k}} . \end {equation*}\] Napište program, který pomocí těchto vztahů vypočítá hodnotu $\pi $, začněte přitom s opsaným a vepsaným čtvercem. S jakou přesností dokážete $\pi $ takto aproximovat? Obdobu tohoto postupu původně navrhl a použil Archimedes.
  4. Lukáš a Mirek hrají hru. Házejí férovou mincí a když padne orel, dá Mirek Lukášovi jedno Fykosí tričko, když padne panna, dá jedno tričko Lukáš Mirkovi. Oba dohromady mají $t$ triček, z toho $l$ patří Lukášovi a $m$ Mirkovi. Pokud jednomu z hráčů dojdou trička, hra končí.
    1. Nechť $m = 3$ a Lukášova zásoba triček je nekonečná. Určete nejpravděpodobnější dobu trvání hry, tedy počet hodů mincí, po nichž hra skončí (protože Mirkovi dojdou trička).
    2. Nechť $m = 10$, $l = 20$. Proveďte simulaci pomocí generátoru pseudonáhodných čísel a nalezněte pravděpodobnost, že Mirek vyhraje všechna Lukášova trička. Celou hru nechejte proběhnout alespoň 100krát (čím více opakování, tím lépe).
    3. Jak se změní výsledek předchozí úlohy, jestliže Mirek minci „vylepší“ a panna nyní padá s pravděpodobností $5/9$?
      Bonus: Vypočtěte pravděpodobnosti analyticky a porovnejte výsledek se simulací.
  5. Mějme lineární kongruenční generátor s parametry $a = 65539$, $m = 2^{31}$, $c = 0$.
    1. Vygenerujte alespoň $1 000$ čísel a spočtěte jejich střední hodnotu a rozptyl. Porovnejte se střední hodnotou a rozptylem rovnoměrného rozdělení na stejném intervalu.
    2. Nalezněte vztah, který vyjádří číslo v generované sekvenci jako lineární kombinaci čísel na dvou předchozích pozicích, tj. nalezněte koeficienty $A$, $B$ v rekurentním vztahu $x_{k+2} = Ax_{k+1} + Bx_k$. Pokud budeme považovat každá tři po sobě následující čísla za souřadnice bodu ve trojrozměrném prostoru, jak rekurentní vztah ovlivní prostorové rozložení těchto bodů?
      Bonus: Vygenerujte sekvenci alespoň $10 000$ čísel a vykreslete 3D bodový graf, který ilustruje význam uvedeného rekurentního vztahu.

Mirek a Lukáš oprašovali staré učební texty.

2. Série 22. Ročníku - 2. odhalte tajemství šuplery

Vysvětlete nám, jak funguje „šuplera“, že dokáže měřit desetiny milimetru.

nad tajemstvími života se zamyslel Marek Scholz

1. Série 22. Ročníku - 2. pirát a zlatá odměna

Jeden pirát má za odměnu dostat pytel zlaťáků. Ale kapitán lodi je lakomý a chce mu to zkomplikovat. Přetavili zlato do válce. A k tomu ještě odlili druhý, velikostně stejný válec z mosazi. Protože uprostřed zlatého je vzduch, váží oba stejně a jsou stejně velké. Jak si má dotyčný pirát vybrat, aby pak nelitoval?

Úlohu vymyslel kolega Mirka Beláňe.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz