Vyhledávání úloh

astrofyzika (19)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (15)gravitační pole (12)hydromechanika (19)jaderná fyzika (5)kmitání (14)magnetické pole (6)matematika (31)mechanika hmotného bodu (68)mechanika plynů (20)mechanika tuhého tělesa (30)molekulová fyzika (11)geometrická optika (16)vlnová optika (6)ostatní (20)relativistická fyzika (8)statistická fyzika (11)termodynamika (28)vlnění (13)

(10 bodů)4. Série 31. Ročníku - S. Kořeni a automati

  1. Nalezněte všechny (tři) reálné kořeny funkce $\exp (x)-5x^2$. Výběr metody je na vás. Nezapomeňte okomentovat, jak a proč jste zvolili daný postup.
  2. Newtonova metoda tak, jak jsme si ji představili funguje i pro funkce komplexní proměnné. Vaším úkolem je vykreslit tzv. Newtonovy fraktály, tedy oblasti v komplexní rovině takové, že když v nich zvolíme počáteční odhad kořenu pro Newtonovu metodu, tak dokonvergujeme k určitému kořenu. Fraktál vykreslete pro funkce $z^3-1$ a $z^6+z^3-1$, kde $z$ je komplexní číslo. Derivace těchto funkcí jsou $3z^2$, resp. $6z^5+3z^2$. Pro výpočet a vykreslení můžete použít Pythonní kód přiložený k zadání.
    Poznámka: Komplexní derivaci, pokud existuje, lze technicky spočítat stejně, jako reálnou derivaci, tedy pro ni platí stejné vzorce pro derivaci součtu, součinu a složené funkce.
    Bonus: Nalezněte co nejzajímavější nebo nejhezčí Newtonův fraktál.
  3. Simulujte na počítači (nebo napočítejte ručně) elementární buněčný automat s pravidlem 54 na mřížce délky 20 s periodickými podmínkami alespoň na 10 časových kroků (víc určitě neuškodí). Na počátku má jedna buňka hodnotu 1 a zbylé 0, uvažujte periodické podmínky. Výsledek zobrazte v časoprostorovém diagramu.
  4. Simulujte hrubnutí 1D povrchu pomocí modelu náhodné depozice popsaném v seriálu. Povrch má rozměr $L = 100$, na počátku je zcela hladký. Nakreslete graf závislosti hrubosti $W$ na čase pro alespoň $10^8$ kroků (jeden krok $=$ jedna nová částice), výsledek diskutujte.

(8 bodů)3. Série 31. Ročníku - P. složený papír

Každý to jistě někdy slyšel a určitě i zkusil: „List papíru nelze na půlku přeložit více než sedmkrát.“ Je to ale skutečně pravda? Najděte hraniční podmínky.

(10 bodů)3. Série 31. Ročníku - S. na procházce s integrály

  1. Vymyslete tři odlišné příklady markovovského procesu, z toho alespoň jeden fyzikální. Je procházka bez návratu markovovská? A co procházka bez křížení?
  2. Mějme 2D náhodnou procházku bez návratu na čtvercové síti s počátkem v bodě $(x,y) = (0,0)$, která je omezena absorpčními bariérami $b_1: y = -5$, $b_2: y = 10$. Nalezněte pravděpodobnost, že v bariéře $b_1$ skončíme dříve než v $b_2$.
  3. Proveďte simulaci pohybu brownovské částice ve 2D a vykreslete graf závislosti střední vzdálenosti od počátku na čase. Uvažujeme diskrétní čas a konstantní délku kroku (jeden krok simulace trvá $\Delta t = \textrm{konst.} $, délka kroku je $\Delta l = \textrm{konst.} $) a umožňujeme pohyb do libovolného směru, tj. každý krok je specifikován délkou a úhlem $\theta \in [0,2\pi )$, přičemž všechny směry jsou stejně pravděpodobné. Zajímá nás především asymptotické chování, tedy vývoj střední vzdálenosti pro $t \gg \Delta t$.
  4. Chybová funkce je definována vztahem \[ \mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x \eu^{-t^2}\,\d t\,.\] Tabelujte tuto funkci, tedy vypočtěte integrál pro mnoho různých $x$. Do řešení nevkládejte tabulku hodnot, ale graf funkce. Zkuste tuto funkci opět numericky zderivovat. Co dostanete?
  5. Najděte si definici hustoty pravděpodobnosti Maxwellova-Boltzmannova rozdělení $f(v)$, tedy rozdělení rychlostí molekul ideálního plynu. Spočítejte pak pomocí MC integrace střední hodnotu rychlosti definovanou \[ \langle v\rangle = \int_0^{\infty} v f(v)\,\d v\,, \] přičemž pro vzorkování použijte náhodná čísla dle Maxwellova-Boltzmannova rozdělení získaná Metropolisovým-Hastingsovým algoritmem. Hodnotu pro konkrétní zvolené parametry srovnejte s hodnotou z literatury.

(3 body)2. Série 31. Ročníku - 1. Zuběnka

Jak velké skladovací prostory by musela mít Víla Zubnička, aby mohla skladovat všechny mléčné zuby všech dětí? Resp. jakým tempem by její nároky na uskladnění rostly? Za jakou dobu by teoreticky měla ve svých skladech většinu zásob fosforu na Zemi?

Karel se myšlenkách vrací na Zeměplochu.

(12 bodů)2. Série 31. Ročníku - E. sypká

Změřte sypný úhel alespoň 2 látek běžně používaných v kuchyni (např. mouka, cukr, sůl apod.).

(10 bodů)2. Série 31. Ročníku - S. derivace a Monte Carlo integrace

 

  1. Vykreslete závislost chyby na velikosti kroku pro metodu odvozenou pomocí Richardsonovy extrapolace v textu seriálu. Jaký je optimální krok a minimální chyba? Porovnejte s centrovanou a dopřednou diferencí. Jako derivovanou funkci použijte $\exp(\sin(x))$ v bodě $x=1$.
    Bonus: Vypočtěte pro tuto metodu teoretickou velikost optimálního kroku pomocí odhadu chyb.
  2. Na webu se nachází soubor s experimentálně zjištěnými $t$, $x$ a $y$ souřadnicemi poloh hmotného bodu. Pomocí numerické derivace nalezněte časovou závislost složek rychlosti a zrychlení a vyneste obě závislosti do grafu. Jaký fyzikální děj bod nejspíše konal? Numerickou metodu si zvolte sami, svoji volbu ale odůvodněte.
    Bonus: Existuje v tomto případě přesnější varianta získání rychlosti a zrychlení, než přímočará aplikace numerické derivace?
  3. Máme zadán integrál $\int _0^{\pi } \sin ^2 x\,\d x$.
    1. Nalezněte hodnotu integrálu z geometrické úvahy za pomoci Pythagorovy věty.
    2. Nalezněte hodnotu integrálu pomocí Monte Carlo simulace. Určete směrodatnou odchylku výsledku.
      Bonus: Vyřešte Buffonovu úlohu ze seriálu (odhad hodnoty čísla $\pi$) pomocí MC simulace.
  4. Nalezněte vztah pro výpočet objemu šestidimenzinální koule pomocí metody Monte Carlo.
    Nápověda: Pythagorovu větu lze využít k měření vzdáleností i ve vyšších dimenzích.

Mirek a Lukáš čtou dokumentaci k Pythonu.

(10 bodů)1. Série 31. Ročníku - S. Rozjezdová

 

  1. Upravte výraz $\sqrt {x+1}-\sqrt {x}$ tak, aby nebyl náchylný k problémům cancellation, ordering a smearing. Ke kterým z těchto problémů byl původně náchylný a proč? Jaký je rozdíl ve výsledku původního a opraveného výrazu, pokud jej vyčíslíme v double precision pro $x=1{,}0 \cdot 10^{10}$?
  2. Popište funkci následujícího kódu. Jaký je rozdíl mezi funkcemi a() a b()? Pro jaké hodnoty x je lze použít? Nebojte se kód spustit a hrát si s hodnotou proměnné x. Určete také asymptotickou časovou složitost programu v závislosti na proměnné x.
    def a(n):
      if n == 0:
        return 1
      else:
        return n*a(n-1)
    def b(n):
      if n == 0:
        return 1.0
      else:
        return n*b(n-1)
    x=10
    print("{} {} {}".format(x, a(x), b(x)))
  3. Označme $o_k$ a $O_k$ obvod vepsaného a opsaného pravidelného $k$-úhelníku ke kružnici. Pak pro ně platí rekurentní vztahy \[\begin{equation*} O_{2k}=\frac {2o_k O_k}{o_k + O_k} ,\; o_{2k}=\sqrt {o_k O_{2k}} . \end {equation*}\] Napište program, který pomocí těchto vztahů vypočítá hodnotu $\pi $, začněte přitom s opsaným a vepsaným čtvercem. S jakou přesností dokážete $\pi $ takto aproximovat? Obdobu tohoto postupu původně navrhl a použil Archimedes.
  4. Lukáš a Mirek hrají hru. Házejí férovou mincí a když padne orel, dá Mirek Lukášovi jedno Fykosí tričko, když padne panna, dá jedno tričko Lukáš Mirkovi. Oba dohromady mají $t$ triček, z toho $l$ patří Lukášovi a $m$ Mirkovi. Pokud jednomu z hráčů dojdou trička, hra končí.
    1. Nechť $m = 3$ a Lukášova zásoba triček je nekonečná. Určete nejpravděpodobnější dobu trvání hry, tedy počet hodů mincí, po nichž hra skončí (protože Mirkovi dojdou trička).
    2. Nechť $m = 10$, $l = 20$. Proveďte simulaci pomocí generátoru pseudonáhodných čísel a nalezněte pravděpodobnost, že Mirek vyhraje všechna Lukášova trička. Celou hru nechejte proběhnout alespoň 100krát (čím více opakování, tím lépe).
    3. Jak se změní výsledek předchozí úlohy, jestliže Mirek minci „vylepší“ a panna nyní padá s pravděpodobností $5/9$?
      Bonus: Vypočtěte pravděpodobnosti analyticky a porovnejte výsledek se simulací.
  5. Mějme lineární kongruenční generátor s parametry $a = 65539$, $m = 2^{31}$, $c = 0$.
    1. Vygenerujte alespoň $1 000$ čísel a spočtěte jejich střední hodnotu a rozptyl. Porovnejte se střední hodnotou a rozptylem rovnoměrného rozdělení na stejném intervalu.
    2. Nalezněte vztah, který vyjádří číslo v generované sekvenci jako lineární kombinaci čísel na dvou předchozích pozicích, tj. nalezněte koeficienty $A$, $B$ v rekurentním vztahu $x_{k+2} = Ax_{k+1} + Bx_k$. Pokud budeme považovat každá tři po sobě následující čísla za souřadnice bodu ve trojrozměrném prostoru, jak rekurentní vztah ovlivní prostorové rozložení těchto bodů?
      Bonus: Vygenerujte sekvenci alespoň $10 000$ čísel a vykreslete 3D bodový graf, který ilustruje význam uvedeného rekurentního vztahu.

Mirek a Lukáš oprašovali staré učební texty.

2. Série 22. Ročníku - 2. odhalte tajemství šuplery

Vysvětlete nám, jak funguje „šuplera“, že dokáže měřit desetiny milimetru.

nad tajemstvími života se zamyslel Marek Scholz

1. Série 22. Ročníku - 2. pirát a zlatá odměna

Jeden pirát má za odměnu dostat pytel zlaťáků. Ale kapitán lodi je lakomý a chce mu to zkomplikovat. Přetavili zlato do válce. A k tomu ještě odlili druhý, velikostně stejný válec z mosazi. Protože uprostřed zlatého je vzduch, váží oba stejně a jsou stejně velké. Jak si má dotyčný pirát vybrat, aby pak nelitoval?

Úlohu vymyslel kolega Mirka Beláňe.

1. Série 10. Ročníku - 4. překvapení po procitnutí

Představte si, že jdete večer klidně spát a do rána se veškeré vzdálenosti a rozměry všech přemetů zvetší desetkrát, přičemž jejich hmotnost se nezmění. Zanechá tato událost nějaké stopy na vaší existenci? A pokud ano, tak jaké?

1. Série 9. Ročníku - E. mohyla z písku

figure

Sypeme-li prášek (suchý písek, mouku a podobně) volně na jedno místo, vznikne kužel s vrcholovým úhlem (viz obr. 4). Pokuste se změřit tento úhel pro různé látky. Umíte výsledky měření nějak odůvodnit?

6. Série 8. Ročníku - S. hledání kořenů polynomu

Napište (a zašlete) program, který určí všechny kořeny polynomu. S jeho pomocí nalezněte čtyři řešení rovnice $x^{4}+2x^{3}+5x^{2}–4x+3=0$.

5. Série 8. Ročníku - S. obyčejná

Sestavte program pro iterační metodu a zvolte vhodnou konstantu $k$ pro fci $g$, abyste dostali vhodný interval okolo 1 splňující kontraktivnost. Ověřte lineární konvergenci a zkuste zjistit míru zrychlení při užití Aitkinova procesu.

4. Série 8. Ročníku - S. tečná metoda

Vezměte poslední popisovanou metodu tečen neboli Newtonovu, která určuje následující bod podle vzorce $c=b-\frac{\textrm{funkce}(b)}{\textrm{derivace}(b)}$ – pro ty neznalé derivování uvádíme pro náš případ

$$\textrm{derivace}(t)=-gt+v-\frac{2pA}{T}\sin\left(\frac{2pt}{T}\right)$$

Řešte touto metodou zadanou úlohu a ověřte rychlost konvergence jak pro přesný odhad počátečního intervalu $(0,88;\; 1,02)$, tak pro hrubý odhad $(0;\; 10)$.

Zjistěte, jak závisí přesnost dosaženého výsledku na počtu kroků u všech popsaných metod (bisekce, regula falsi, metoda sečen a tečen), tedy ověřte, zda je zpřesňování lineární, kvadratické, či jiné. Je tato vlastnost ovlivněna volbou počátečního intervalu?

5. Série 7. Ročníku - 2. petrolejka

Možná ještě někde doma (nejspíše na půdě) najdete starou petrolejovou lampu se skleněným cylindrem. Pokud se budete muset delší dobu obejít bez elektrického proudu, přijde docela vhod. Potom si možná všimnete zajímavého jevu: uzavřete-li horní ústí cylindru (raději něčím jiným než rukou), plamen se nesníží, ale proti očekávání vzroste a změní se jeho odstín. Jak tento efekt vysvětlíte?

5. Série 2. Ročníku - 4. lokomotivy

figure

Lokomotivy

Lokomotivy určené pro nákladní vlaky jsou jiné než ty, které vozí vlaky s cestujícími. „Nákladní lokomotivy“ jsou přizpůsobeny pro pomalejší jízdu, ale větší nádklady a u „lokomotiv pro cestující“ je tomu naopak. Rozhodněte, která lokomotiva na obrázku je určena pro nákladní vlaky a která pro vlaky s cestujícími.

5. Série 2. Ročníku - S. Lorentzovy transformace

V posledním seriálovém příkladu se dotkneme transformací snad nejpopulárnějších – Lorentzových transformací. Na přelomu 19. a 20. století bylo přesnými pokusy změřeno, že světlo se pohybuje stejnou rychlostí vůči všem inerciálním soustavám. To zásadně odporuje běžné představě o prostoru a času – odporuje to prosté zkušenosti, že rychlosti se sčítají. Tento problém vyřešil r. 1905 A. Einstein ve svojí speciální teorii relativity. Tato teorie není založena na naší každodenní zkušenosti s malými rychlostmi, a proto se nesmíme zaleknout některých jejích zdánlivě zvláštních důsledků v oblastech, na které nejsme zvyklí. Změna představ na prostor a čas se hlavně odrazila v nahrazení Galileových transformačních vztahů mezi dvěma inerciálními soustavami pohybujícími se vzájemnou rychlostí $v$ ve směru osy $x$, které v čase nula splývají, $x′=x-vt$, $y′=y$, $z′=z$, $t′=t$, se vztahy Lorentzovými. Vaším úkolem bude nyní odvodit je. Využijeme k tomu zkušenosti z pomoci Severním království. Jak bylo v komentáři k seriálovému příkladu 3. série poznamenáno, transformační vztahy mezi $x$, $y$ a $x′$, $y′$ (viz komentář ke zmíněném příkladu) jsou jedinými, které zachovávají vzdálenost, tj. $Δx+(kΔy)=Δx′+(kΔy′)$. Využijeme něčeho podobného. Lze odvodit (provedeme v komentáři), že v našem případě dávají výrazy

$$Δx-(cΔt),Δx′+(cΔt′)\; (1)$$

stejné výsledky. Musíme tedy hledat takové transformace, které převádějí výrazy (1) jeden na druhý. Ve shodě s panem Einsteinem dále předpokládejme, že vztahy mezi souřadnicemi soustav $S$ a $S′$ ($S′$ se pohybuje rychlostí $v$ ve směru $x$ vůči $S$) jsou

$$x′=ax+bt,\; y′=y,\; z′=z,\; t′=cx+dt, \; a,\;b,\;c,\;d∈\textbf{R}\; (2)$$

a pro souřadnice počátku soustavy $S′$ platí $x_{p}/t_{p}=v,\; x_{p}′=0,\; y_{p}′=0,\; z_{p}′=0$. Najděte tedy transformace typu (2), které splňují (1). Uveďte postup!

4. Série 2. Ročníku - S. polární souřadnice

figure

Polární souřadnice

  • Polární souřadnice bodu A v rovině je dvojice čísel $r$, $φ$, udávající vzdálenost bodu $A$ od počátku a úhel polopřímky $PA$ a osy $x$ (obr. 4). Odvoďte transformační vztahy od polárních souřadnic $r$, $φ$ ke kartézským souřadnicím $x$, $y$.
  • U polárních souřadnic hraje roli souřadných os přímky procházející počátkem a kružnice se středem v počátku (obr. 5) - na těchto křivkách je vždy jedna souřadnice konstantní. Vektory báze se nyní volí v každém bodě tečné k souřadnicovým osám v tomto bodě a délky $|\textbf{e}_{r}|=1$, $|\textbf{e}_{φ}|=r$ (obr. 6). V tomto případě nejsou již vektory báze v různých bodech rovnoběžné, jak tomu bylo v případě kartézských souřadnic. Odvoďte transformační vztahy od souřadnic $b_{r}$, $b_{φ}$ k $b_{x}$, $b_{y}$ vektoru $\textbf{b}$ vedoucího z bodu $A$. Souřadnice $b_{r}$, $b_{φ}$ jsou počítané vůči bázi $\textbf{e}_{r}$, $\textbf{e}_{φ}$ v bodě $A$ (polární souřadnice), $b_{x}$, $b_{y}$ jsou počítané vůči bázi $\textbf{e}_{x}$, $\textbf{e}_{y}$ (kartézské souřadnice) a bod $A$ má polární souřadnice $r$, $φ$ (viz obr. 7).

2. Série 2. Ročníku - S. vektory

figure

Dvě soustavy

figure

Obecné soustavy

  • Mějme zadané dvě soustavy souřadnic pomocí vektorů $\textbf{e}_{x}$, $\textbf{e}_{y}$ a $\textbf{e}_{x}′$, $\textbf{e}_{y}′$ a společného počátku $P$. Vzájemnou polohu soustav máme zadanou pomocí souřadnic $a_{xx}$, $a_{xy}$, $a_{yx}$, $a_{yy}$ vektorů $\textbf{e}_{x}′$, $\textbf{e}_{y}′$ vůči bázi $\textbf{e}_{x}$, $\textbf{e}_{y}$. $\textbf{e}_{x}′=a_{xx} \textbf{e}_{x}+a_{xy} \textbf{e}_{y}$, $\textbf{e}_{y}′=a_{yx}\textbf{e}_{x}+a_{yy}\textbf{e}_{y}$. Odvoďte transformační vztahy mezi souřadnicemi $x$, $y$ a $x′$, $y′$ v závislosti na koeficientech $a_{xx}$, $a_{xy}$, $a_{yx}$, $a_{yy}$ (tj. předpis, jak z $x$ a $y$ vypočítat $x′$ a $y′$ a naopak).
  • Jelikož obě soustavy mohly být obecné (nepravoúhlé, bez stejných jednotek), bylo potřeba k zadání vzájemného vztahu soustav udat čtyři koeficienty $a_{xx}$, $a_{xy}$, $a_{yx}$, $a_{yy}$. Pokud budou obě soustavy kartézské (pravoúhlé s jednotkovým měřítkem), tak musí být délky vektorů $\textbf{e}_{x}$, $\textbf{e}_{y}$ resp. $\textbf{e}_{x}′$, $\textbf{e}_{y}′$ jednotkové a vektory musí být na sebe kolmé. K udání vzájemné polohy pak stačí zadat vzájemný úhel $φ$. Jak souvisí v tomto případě koeficienty $a_{xx}$, $a_{xy}$, $a_{yx}$, $a_{yy}$ s úhlem $φ$?

3. Série 1. Ročníku - 2. planeta liliputánů

Představte si, že do rána se všechny vzdálenosti a rozměry předmětů zvětší desetkrát, přičemž jejich hmotnost se nezmění. Jaké by byly důsledky?

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz