Úlohy

Vyhledávání

astrofyzika (2)biofyzikla (1)gravitační pole (1)hydromechanika (3)kmitání (2)matematika (3)mechanika hmotného bodu (5)mechanika plynů (2)machanika tuhého tělesa (2)molekulová fyzika (1)geometrická optika (3)ostatní (3)relativistická fyzika (1)statistická fyzika (6)termodynamika (4)vlnění (4)

1. Série 31. Ročníku-S. ... Rozjezdová(10 bodů)

 

  1. Upravte výraz $\sqrt {x+1}-\sqrt {x}$ tak, aby nebyl náchylný k problémům cancellation, ordering a smearing. Ke kterým z těchto problémů byl původně náchylný a proč? Jaký je rozdíl ve výsledku původního a opraveného výrazu, pokud jej vyčíslíme v double precision pro $x=1{,}0 \cdot 10^{10}$?
  2. Popište funkci následujícího kódu. Jaký je rozdíl mezi funkcemi a() a b()? Pro jaké hodnoty x je lze použít? Nebojte se kód spustit a hrát si s hodnotou proměnné x. Určete také asymptotickou časovou složitost programu v závislosti na proměnné x.
    def a(n):
      if n == 0:
        return 1
      else:
        return n*a(n-1)
    def b(n):
      if n == 0:
        return 1.0
      else:
        return n*b(n-1)
    x=10
    print("{} {} {}".format(x, a(x), b(x)))
  3. Označme $o_k$ a $O_k$ obvod vepsaného a opsaného pravidelného $k$-úhelníku ke kružnici. Pak pro ně platí rekurentní vztahy \[\begin{equation*} O_{2k}=\frac {2o_k O_k}{o_k + O_k} ,\; o_{2k}=\sqrt {o_k O_{2k}} . \end {equation*}\] Napište program, který pomocí těchto vztahů vypočítá hodnotu $\pi $, začněte přitom s opsaným a vepsaným čtvercem. S jakou přesností dokážete $\pi $ takto aproximovat? Obdobu tohoto postupu původně navrhl a použil Archimedes.
  4. Lukáš a Mirek hrají hru. Házejí férovou mincí a když padne orel, dá Mirek Lukášovi jedno Fykosí tričko, když padne panna, dá jedno tričko Lukáš Mirkovi. Oba dohromady mají $t$ triček, z toho $l$ patří Lukášovi a $m$ Mirkovi. Pokud jednomu z hráčů dojdou trička, hra končí.
    1. Nechť $m = 3$ a Lukášova zásoba triček je nekonečná. Určete nejpravděpodobnější dobu trvání hry, tedy počet hodů mincí, po nichž hra skončí (protože Mirkovi dojdou trička).
    2. Nechť $m = 10$, $l = 20$. Proveďte simulaci pomocí generátoru pseudonáhodných čísel a nalezněte pravděpodobnost, že Mirek vyhraje všechna Lukášova trička. Celou hru nechejte proběhnout alespoň 100krát (čím více opakování, tím lépe).
    3. Jak se změní výsledek předchozí úlohy, jestliže Mirek minci „vylepší“ a panna nyní padá s pravděpodobností $5/9$?
      Bonus: Vypočtěte pravděpodobnosti analyticky a porovnejte výsledek se simulací.
  5. Mějme lineární kongruenční generátor s parametry $a = 65539$, $m = 2^{31}$, $c = 0$.
    1. Vygenerujte alespoň $1 000$ čísel a spočtěte jejich střední hodnotu a rozptyl. Porovnejte se střední hodnotou a rozptylem rovnoměrného rozdělení na stejném intervalu.
    2. Nalezněte vztah, který vyjádří číslo v generované sekvenci jako lineární kombinaci čísel na dvou předchozích pozicích, tj. nalezněte koeficienty $A$, $B$ v rekurentním vztahu $x_{k+2} = Ax_{k+1} + Bx_k$. Pokud budeme považovat každá tři po sobě následující čísla za souřadnice bodu ve trojrozměrném prostoru, jak rekurentní vztah ovlivní prostorové rozložení těchto bodů?
      Bonus: Vygenerujte sekvenci alespoň $10 000$ čísel a vykreslete 3D bodový graf, který ilustruje význam uvedeného rekurentního vztahu.
ostatnímatematika

2. Série 22. Ročníku-2. ... odhalte tajemství "šuplery";(0 bodů)

Vysvětlete nám, jak funguje „šuplera“, že dokáže měřit desetiny milimetru.

ostatní

1. Série 22. Ročníku-2. ... pirát a zlatá odměna(0 bodů)

Jeden pirát má za odměnu dostat pytel zlaťáků. Ale kapitán lodi je lakomý a chce mu to zkomplikovat. Přetavili zlato do válce. A k tomu ještě odlili druhý, velikostně stejný válec z mosazi. Protože uprostřed zlatého je vzduch, váží oba stejně a jsou stejně velké. Jak si má dotyčný pirát vybrat, aby pak nelitoval?

ostatní
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz