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Serial: Oscillations and Waves

Introduction

One of most ubiquitous and well described phenomena in nature are oscillations. From guitar
strings, pendula or sea waves to oscillations in electric circuits, many systems exhibit some
form of this type of motion. What is the origin of oscillations? How do oscillating systems
react to external forces? What variables play an important role, and which do not infuence the
oscillations? These are the types of questions we will answer in this year’s series.

Back to Springs

If we are to understand more complicated phenomena, such as waves, we will first need to
carefully analyse the elementary componenet of any oscillating problem - simple harmonic
motion. We will therefore start with the simplest example - a mass on a spring. This system
is perhaps even infamous in the world of physics, as we tend encounter it almost always when
discussing oscillations. You have probably already met this system, or you are about to meet
it during your standard courses on physics. The reason for the common usage of this system in
education is the fact, that this innocent looking system already includes most of the important
properties shared by all oscillating systems.

There are infact a few properties of oscillating systems which are independent of the specific
nature of the system - the properties can be defined for a spring, a pendulum, or any other
system. Further on, we will determine what are these properties.

Fig. 1: A mass on a spring before pulling it down, while pulling it down and after release.



FYKOS Serial XXXIV.I Oscillations and Waves

Now, consider an ideal spring (see figure EL which exhibits a a force of magnitude F' = kAd
when elongated by length Ad, where k is the so called spring constant. The force tries to restore
the original length of the spring. So, when a mass m is hanged on the spring, which is kept
stationary, the force of the spring balances the weight of the mass, so it follows that

mg = kAd.

The velocity of the mass is zero, as the mass is at rest, and the kinetic energy of the mass
in this state is zero as well. The potential energy of the system is composed from the energy
stored in the spring and from the gravitational potential energy. We can choose a reference level
of energy as the level when the elongation of the spring is Ad, and hence even the potential
energy in the stationary state can be taken as zero.

What happens when we now displace the mass so that the elongation of the spring is
Ad + xo? We still assume that the mass is at rest - it is held at certain constant displacement
zo. The force on the mass from the spring therefore changes, as well as the potential energy of
the system. The change of the potential energy can be expressed as

Ep = %kwga
as can be checked from the graph of force in the spring as function of the displacement. The
force acting on the mass is

F = —kxo )

, where the minus sign indicates that the force acts in the direction opposite to the direction
of displacement xo. Here, we encounter the first two general properties of oscillating systems.
Firstly, the forces in oscillating systems act in the opposite directions to the direction
of displacement. Secondly, the potential energy of the simple harmonic oscillations
increases as square of the displacement.

Now, we let the oscillations start by releasing the mass in the displaced position. The force
accelerates the mass towards desplacement z(to) = 0, which is reached in time ¢o. During this
motion, the force does work %kx% exactly, and so the kinetic energy of the mass at the moment
of zero displacement is

1 1
By = imUQ(to) = Ekx?}

Clearly, the energy of the system does not disappear, and the mass continues the motion beyond
the equilibrium position z(to) = 0 with speed v(to) = xo \/g7 continued by gradual slowing
as the force acting on the mass changes the direction. The mass then reaches displacement_of
—o, and the process repeats in reverse, until the system reaches the initial state (see figure [1)).

Towards Generality - Phase Space

Now, lets try to determine the dynamics of this simple oscillator, that is determine the depen-
dence of different variables on time. For now, we do not use calculus for the derivation of the
dynamics, so for those of you who are familiar with derivatives, this approach might seem a
bit unnecessarily complicated. but we believe that it is an interesting approach nonetheless.
That is because we use the idea of phase space. However, some form of pre-calculus cannot be
avoided.
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The phase space is a space that consist of two types of variables - variables that correspond
to positions/displacements of the system, and variables corresponding to the momenta of the
system. In our case the phase space has only two dimensions - one dimension characterising the
displacement x and second dimension corresponding to momentum p = mu.

During the motion of the oscillator, the law of conservation of energy applies. We say that
the energy is a constant of motion (or integral of motion). Hence, we can write

1
E—Emv + k2 fkmo

This equation can be viewed as a constraint on the values of momentum and displacement in
the phase space

2
LS N R -
o + Qkx = 2kx0.
Multiplying by % leads to
2
p 2 _ 2
km ta =20

If you recall the lessons on analytic geometry, you can recognize this constraing as a conditions
for points lying on the circle of radius x¢ in the phase space, where the vertical axis represents
variable \/%, see figure E So, the oscillator can be described by a point on this circle in
the phase space. In order to get the dynamics of the oscillator, we need to determine how
the oscillator moves along this trajectory in the phase space. Qualitatively, we can immediately
determine that the direction of motion of the oscillator is in the negative, i.e. clockwise direction.
This is a consequence of the Newton’s second law and the orientation of the force - for positive
displacements x the force acts in the negative direction, and so the momentum must increase
in the negative direction as well.

For the description of the motion along a circle we know of a useful variable - angular velocity.
Generally, this velocity can be time-dependent, and we will denote it as w. The angular velocity
at time ¢ is given by angle Ay, which the point in the phase space covers in between the time
t and t + At, where At is a small time interval. The definition of angle leads to

A
Ap = 2l )
Zo
where Al approaches the arc length covered by the point in time At for sufficiently small At.
This length can be determined by Pythagorean theorem

2
Al = Ax? + 7Ap 5

where the conservation of energy leads to

Ap = \/km (w?) - (m—Am)Q) — v km (23 — x2),

where Az is the change of the variable z in time Atje velikost zmény soufadnice x za cas At.
For small At a following expansion can be made (see later for details)

\/km xo (z — Ax) ) \/km 2 — 2%+ 2zAzx) =

=k 2 —z2) 1+ 2xA:c ~\k 2 —x?) <1+ —x2>'
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Fig. 2: Trajectory of the harmonic oscillator in the phase space.

1:2
Ap = Az [km———
TE—T

Therefore

which leads to

Al = Az, /1

Hence, the angle covered by the point is

=
x2 7m2'

Al 1
Ap=—=A
LA v x% — 2?2
and the angular velocity is
= Ap Az 1
At T At x2 — a2’

The ratio Az /At can be recognized as the (direct) velocity of the mass, which obeys

k- 5 2
E(mo z?)

and therefore the following critical equation applies

w =

k
m b
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where we should notice that the angular velocity in the phase space is time-independent, i.e.
our oscillator moves along the circular trajectory in phase space at constant angular velocity.

This discovery finally leads to an insight into the dynamics of oscillations - the oscillations
are given as projection onto the z-coordinate axis of the point on the circular trajectory in
phase space. This projection is

x = g cos(p) = xo cos(wt)

in our original setup, where ¢ is the current angle in the phase space, taken in the negative
direction (see the figure). Similarly, the momentum can be determined by projection onto the
vertical axis as

. sin(wt) .

VEkm

Therefore,

p = —xoVkmsin(wt),

k
= — — si t) = — i t).
v x4/ - sin(wt) Zow sin(wt)

Finally, from Newton’s second law, we can derive that the acceleration of the mass is

F kx 2
a=—=—— = —gow" cos(wt).
m m
Hence, we recovered the complete dynamics of our oscillator.

What general properties of the system did we uncover in this example? Firstly, the oscilla-
tions look as a uniform motion along circular trajectory in the phase space (with usage of proper
momentum units). Secondly, the frequency of this motion can be determined from Newton’s
second law and from the relation between acceleration and displacement

2
a4 =—Ww T.

Harmonic Approxilator

We mentioned that an important property of harmonic oscillations is the parabolic profile of
the potential energy — potential energy increases as a square of the displacement. It turns out
that as long as the system is in a stable position (that in some at least local minimum of
potential energy), we can always consider the potential energy to be parabolic for sufficiently
small displacements. So, for a stable position, small displacements always lead to emergence
of forces acting in the opposite direction to the displacements, and increase linearly with the
small displacements.

The linear dependence of the forces on the displacements is necessary for the energetical
dependence to be parabolic, and the minus sign signifies the system’s tendency to minimise the
potential energy and return to the equilibrium minimum position.

In order for the oscillations to be harmonic, it is further required that the kinetic energy,
which the system obtains by the action of the emergent forces, increased as a square of the
momentum. Overall, we need a circle to be the trajectory of the system in the phase space in
order for it to undergo harmonic oscillations. What happens when the energetical dependence
is slighlty different will be explored in the next episode of this series.
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The most important characteristic of oscillations is their frequency. Generally, the frequency
can be determined by analogy to the case of mass on a spring — we start by the determination
of the force as a response to small displacement of the system from the equilibrium position.
This force is then substituted into Newton’s second law, so that the acceleration of the system
can be determined. The resulting equation has form a = —w2x, where z is the displacement
and wo is the frequency we searched for. So, the problem of finding the frequency of oscillations
reduces to the problem of approximating the forces acting on the system near the equilibrium
position. The simplicity and generality of this method means that many stable systems are
modelled as harmonic oscillators for small displacements.

In order to use this method efficiently, it is necessary to remember or derive some approx-
imations of specific functions for small displacements. We start by the elementary functions —
polynoms. Consider a small number = (one such that |z| < 1), for which we are trying to
determine the approximate value of expression

1+a)",

where n is a natural number. Clearly, if x is a small number, then also ‘xQ‘ < |z, x3’ < ’azz‘
and so on. Hence, we can talk about the precision of our approximation, based on maximum
the order of the x we consider. For example, a second order polynom can be approximated to
the first order as

A+z)’=14+2c+2>~1+22

and the polynom of fourth order can be approximated to the second order as
(1+2)" =14 404 62° +42° + 2" =~ 1 4 4o + 62°.

For the purposes of the frequency determination for harmonic oscillations, a linear approxima-
tion (that is approximation to the first order) will suffice in most cases, i.e. the approximation
of type

1+2)"=1+cz,

where ¢ is some constant. From the binomial theorem for expression (1 4 x)", it follows that
¢ = n. For the curious ones among you, you can try a proof by induction or you can use the
proof of binomial theorem, which makes this statement a simple corollary.

However, this approximation is useful even beyond the set of natural numbers — it can be
shown that for a general real number a the same approximation can be made

1+2)*~1+ax,

to the first order. For example
1

(1+2)"
This general statement is harder to prove, if you are curious about it look up the Taylor
expansion.

Polynoms are not the only functions we will encounter however. Quite often, we will meeet
goniometric functions. How can we approximate these? Lets start by function sine, close to
point 0. The value of sine can be interpreted as the ratio of a length of a side to the length of
the hypotenuse in a right-angled triangle. Imagine a Thales’ circle (see figure JJ), where one of
the sides of the triangle is very small. The sine of the smallest angle is clearly also a very small

~1—rnx.
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number and the length b of the side of the triangle approaches the length of the circular arc I,
which determines the smallest angle. So, we can say that b ~ [ and hence

sinp = -~ —.
c ¢

We can notice that the central angle subtended by the same arc has value 2¢, and from the

definition of angle

l 2l
250 =< = 7
3 C
which means that ;
Y=,
c
and therefore
sinp ~ .
l
a
b
2
© @ <
c

Fig. 3: Thales’ theorem for the approximation of value of sine for small angles.

Similar argument leads to
tanp =~ ¢.

A perculiar property of cosine is that for a small angle it can be approximated as a constant
to the first order in the vicinity of zero (this is related to the fact that cosine has a maximum
at zero). To the second order, it can be written that

2

cosapzlf%,

which is an approximation of the cosine by a parabola.



FYKOS Serial XXXIV.I Oscillations and Waves

A final class of functions we will consider are the exponentials and logarithms. We will try
to approximate the exponential close to point £ = 0. As you may know, the Euler’s number

can be defined as
. 1\"
e= lim (1+ — .
n— oo n

Hence we can see, using our polynomial approximation (but we should understand that this is
not a rigorous mathematical proof)

1 nT
e® = lim (1+7) L S
n—o0 n n
If we need an approximation of a exponential with a different base, we can use relations for
logarithms
2" = ("?)" =e"" 14+ 22

and similarly for other bases.

The logarithm itself cannot be expanded around zero, where it approaches —oco. We can
however make an approximation around one, which is the inversion of the approximation for
the exponential. We are looking for approximation In(1 + z), and the inversion of exponential
approximation leads to

In(l+z)~In(e")==x.

Finally, for logarithms of different base

log; (1 + z) = logg(e) In(1 + z) = zlog e.

First Approximation - Pendulum

In order to show the derived approximations in practice, consider a classical pendulum — mass
m attached to a massless solid rod of length [ under the acceleration of gravity g. The rod
is attached to an unmoving pivot (see the figure). This system has an equilibrium position —
forces on the mass cancel out when the mass is positioned underneath the pivot. For a small
displacement from this position, the force of gravity acting on the mass can be projected onto
direction along the rod and direction perpendicular to the rod.

From this geometry of the problem, it can be seen that the force perpendicular to the rod
has magnitude

F| =mgsinyp,

where ¢ is a small angular displacement of the rod from the equilibrium position. The torque
due to this force is
M = —lF| = —mglsinp
and the moment of inertia of the mass with respect to the axis of rotation going through the
pivot is
J=mi?,

and hence the angular acceleration is equal to

M [ si
a=—= _Mgsne :—%sincp.

J ml2
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lcos ¢

Fig. 4: Geometrie kyvadla pfi malé vychylce.

For small ¢ we recover the standard equation of harmonic oscillations
g
a~ _7¢7

only instead of linear acceleration and displacement, we have angular acceleration and dis-
placement, but this does not change anything in the algebra of the problem. The system still
oscillates harmonically around the equilibrium position with frequency

=./2
oo T

Here, we should be careful and recognize that the pendulum itself does not move with constant
angular frequency in ¢, i.e. it does not rotate uniformly around the pivot - the angular acceler-
ation changes and generally cannot be set to zero. But, the oscillations in ¢ themselves occur
with frequency w.

We could also check whether the potential energy has the required parabolic profile (kinetic
energy for rotating body has a quadratic profile in terms of angular momentum). We can choose
the zero level for the potential energy at the height of the equilibrium position of the mass.

Then
902 1 2
E,=mg(l—lcosp)~mgl|1— -5 :§m91g0 ,

and hence the potential energy has the required quadratic profile for small displacements.
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