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Serial: Waves

Waves are phenomena represented by a number of oscillators distributed in space, exhibiting
collective oscillations with predictable dynamics. The physics of waves has a lot in common with
the physics of oscillations, and represents the continuation of our ideas about discrete oscillators
into continuum systems. For oscillators, we had to derive the dynamical equations of motion.
For waves, we will have to derive the so called wave equation. The derivation of this equation
will be demonstrated here on a simple example of a string, which will lead us to definition of
some elementary notions necessary for the step from discrete systems to continuum.

Taut String

Consider a horizontally taut string and assume that it can only vibrate in the vertical direction.
Let the tension in the string be 7" in the equilibrium position. In this position, the tension only
acts in the horizontal direction. Let the length mass density of the string be A, so that for a
string of length L the overall mass of the string is m = AL. We choose a coordinate system
such that the string coincides with the x axis in the equilibrium position and one end of the
string is located at the origin of the coordinate system. Therefore, z coordinate corresponds
to coordinate along the string. The displacement of the string from the equilibrium position
is labeled as u(z,t), since the displacement can differ in both position z and in time ¢. Our
task is as follows — for a certain displacement profile u(zx,t), determine the forces acting on the
elements of the string, and hence determine the acceleration of the string elements. We expect
this to reproduce the Newton’s second law in our system. So, we can imagine the string divided
into small elements of length dx. Each of these elements has mass dm = Adx. We can imagine
that these elements are connected by springs (hence the similarity with oscillators). The force
of these springs must be such that the force in the horizontal direction is equal to the tension
T. Referring to image E7 we can determine that the force acting in the vertical direction is then
given as
dF, = tan(da(z)) T,

where tan(da(x)) satisfies
u(z 4+ dx) — u(x)

dx '
At the same time, the force in opposite direction acts on every element as well, with magnitude

tan(da(z)) =

dF, = tan(da(x — dz)) T,
where
u(x) — u(x — dzx)
dx '
The overall force in the positive vertical direction is therefore given as

u(z +dz) —u(z)  u(@) —u(r - da:))
dz dz ’

tan(da(z — dz)) =

dF:dF\,dF\i:T(



FYKOS Serial XXXIV.V Waves

u(x + dzx)

u(x —dz), T

x

Fig. 1: String is divided into elements of length dx. The forces acting on the element in the
middle are shown, including the decomposition into the vertical and horizontal direction.

The acceleration of the string element is given by the Newton’s second law

_ T (u(z+dr) —u(r) ulr)—ulr—dz)
dFf =adm = a)\dw< >

dz dz

The acceleration is equal to the second derivative of the displacement with respect to time.
Furthermore, in the limit of dz — 0, the term in the brackets goes to

u(z +dz) —u(z) u(z) —u(zr—dz) . du|  du
dx dx dzx T dx r—dz '
Hence,
2 dj‘ — dJ’
d7u _ z dz |z dz |z —dz
dez A dz

Finally, we can recognize that the expression in the bracket is just a definition of the second
derivative of u with respect to x, leading to the so called wave equation in one dimension

Cu_ T
dez2 — Adx?”

In this case, the constant % will be denoted as v2. Using dimensional analysis, we can determine
that the dimensions of v are that of speed. Constant v indeed corresponds to the so called phase
speed of the waves.

The wave equation plays the same role as the equation for the acceleration of the displace-
ment in discrete oscillating systems. We can also find a variant of the natural frequency, but
first lets try to find some possible solutions of the wave equation.
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Plane Waves

Since waves are build up from individual oscillators, we can try to see whether simple harmonic
oscillations can be a solution of the wave equation. Assume that the solution of the wave
equation has the following form

a(z,t) = U(z)e ",

where U(z) is the profile of the amplitude of the oscillations, which can vary with the posi-
tion. Again, the displacement is a real variable, but introducing the complex @(z,t) leads to a
simplification of the algebra. The real solution is recovered as u(z,t) = Red(z,t). Substitution
into the wave equation leads to

d2671Wt > iwt d2U

V@) =g =ve " gz
i it d?U
2 iwt 2 iwt
U(x)( w)e =v’e Tz
d*U w?
iGN

We are familiar with this equation, only the variable in the previous case was time instead of
position — this is an equation of simple harmonic oscillations. Therefore, the solution has the

form '
U(z) = Ae' |

where A is a (potentially complex) constant, and k is a real number. Usually, we refer to k as
the wavenumber. Substituting this form into the previous equation leads to

—kPAMT = —ZU(x) = W=k,
v

This equation is called the dispersion relation — it determines the dependence of the frequency
of the waves on the wavenumber. Finally, the complex solution of the wave equation is therefore

a(x,t) = Aettkz—wt)
The real solution is u(x,t) = |A| cos (kx — wt + ¢), where
A=|Ale¥

determines both the amplitude |A| and phase shift ¢.

Same as was the case for the oscillations, the wave equation is a linear equation, and therefore
the solutions of the equation can be constructed by linear superpositions of known solutions.
For example, combination

ﬁ/(ZE,t) _ Aei(kz—wt) + Bei(—k:r—wt)

is also a solution fo the wave equation.
The behaviour of these so called plane waves can be described as translation of the profile
U(x) with passing time ¢. In order to see this interpretation clearly, consider rewriting the

solution as ' ‘ ‘
ﬁ(l‘,t) — Ael(kmfwt) _ Aelk(szt) _ 14ellc(zf'ut)7
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where we used the dispersion relation (and assume that both w and k are positive). We can
see that the wave therefore moves to the right (in the direction of increasing x). On the other
hand, if the solution is of the form

ﬁ(w,t) _ Aei(—kz—ut) _ Ae—ik(z+vt) 7

the waves moves to the left (in the direction of decreasing ).

Fourier substitution

In the same way as for oscillations, we can transform the differential wave equation into an
algebraic equation. For the solution in the form of the right-moving plane waves, we can write

g%—iw i%ik
dt T dzx ’

2 2

d 2 d——>—k2.

7%_
at? Yo Qg2

The application of this substituion leads to a direct derivation of the dispersion relation from
the wave equation.

Boundary conditions

Since the waves fill out the entire space, the specific solution is constrained by this space in form
of the so called boundary conditions. For our example of the string taut between two points,
the string does not move at these points. On the other hand, if we had a rope fixed to a pivot
on one end and free to move on the other hand, than the restoring force on the free end would

be zero. This corresponds to condition
du

dx
at the free end. These points represent the interfaces from which the waves can reflect. For a
general interface, we would also observe the transmission of waves through the interface, but in
these examples the waves cannot exist beyond this interface, and therefore only the reflection
occurs. This can be represented by assuming that the solution is a superposition of two plane
waves moving in the opposite direction, possibly with different amplitude and phase shift. The
example of such solution follows.

Standing waves

Consider a string taut between two points, where it is kept stationary. The displacement u of
the string from the equilibrium position follows the wave equation

d*u _ T d*u
dez2 — A da?’
The distance between the points is L. Our task is to determine the stable dynamics of the string,

i.e. determine u(zx,t), which leads to a repetition of the same cycle. The boundary conditions
can be written after definition of the system of coordinates. Lets define this system so that one
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of the points where the string is kept stationary is the origin of the coordinate system, and the
other point lies at the distance L along the x axis. Then, the boundary conditions are

u(0,t) =0 =u(L,t) .

Now, assume that the solution can be found in the form of superposition of the two plane
waves — one moving to the right and other moving to the left. Then, the complex displacement
is given as ) )
ﬁ(m,t) _ Ael(szwt) + Bel(*kmfwt) )
The dispersion relation can be derived from the wave equation
w? =v°k?
where v = \/? . The unknowns are therefore A, B and k, since w is given as w = vk (assuming

that k is positive — negative k is included in the wave moving in the opposite direction). First
boundary condition leads to

0=12a(0,t) =Ae ™" + Be™™" = A=-B,
second leads to
0= a(L,t) = —Be'*Lmwt) | pemilkltwt)
0=B (efikL _ eikL) .
Using €' = cosz + isinz, we can write
0 = B(cos(kL) —isin(kL) — cos(kL) — isin(kL)) ,
0= —2iBsin(kL) .
Hence, we can have either a trivial solution with B = 0, or we must have
kL =nm,

where n is a (positive) integer, which ensures that sin(kL) = 0. The constant that are left
undetermined are therefore only the absolute value and phase of B, which corresponds to the
amplitude and global phase of the solution. The displacement of the string is therefore given as

: T nm nm inw —i T nn . .
a(z,t) = Beﬂ\/;ft (eﬂTz - e‘Tz) = Be \K L (—2i) sm(%m) .
Using B = |B|e'? and —i = e~'% leads to
: ) —j T nry |
a(x,t) :2\B|el(”_§)e ﬁLtsm(%x) .

The real displacement is therefore

N . T nn T\ . (nn \
u(z,t) = Red(z,t) = 2|B|cos U)\ Lt—ap+2 sm(Lx)f

. T nn . [(nn
= —ZB|5111<\/ Xft_ Lp) s1n<f;r) .
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If we wanted to specify | B| and ¢ (and perhaps even n), we would need to know the displacement
along the whole string at certain point in time. For example, we could be given that at time
t=20
= Csin( =
u(zx, 0) sm(Lx> ,

where C' is a known real constant. Therefore, we have

C’sin(%m)

This means that n = 1, ¢ = § a |B| = 5. The general evolution of the displacement is therefore

u(z,t) = —2% sin| 4/ %%t —g sin(%m) = Ccos \/%%t sin(%w) .

This equation does not feature any unknowns, and therefore the dynamics of the string is
completely determined. Notice that we required the superposition of two waves in order to
describe the dynamics correctly — one wave moving to the right and one to the left. This is the
case typically for the standing waves, and it represents the reflection at the system boundaries,
as mentioned before.

—2|B|sin(—¢) sin(%x) .

Damping
Damping, i.e. the loss of energy of the waves can be included in the wave equation through
terms including the first order derivatives. These derivatives can be either with respect to time
t or position z. In here, we present the case where the derivative is with respect to time, but
the case for position is similar.
So, consider an equation

d%u du 2d?%u

@ Tw T a
where v is the strength of the damping. For the complex displacement, we can carry out the
Fourier substitution

—w?t — iyt = —k*va
which means that the dispersion relation is
w? + iyw = k*® .

This presents us with a non-trivial problem — we need to solve a complex quadratic equation.
Mistakes in this derivation can be avoided using the completion of the square method

2 2 2 2
wz—i—i'yw—fyz—i—%:(w—l—i%) +’YZ:/€2U2,
.12_ 22_’Y72

<w+12) =k"v 1

Now, we have two possibilities. Either the damping is relatively weak, and we have k?v? > %.

Then
/ 2 2
w—i—i%::t k2v2—% = wz—i%:lz k2v2—ryz.
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For strong damping, which is characterized by inequality k?v? — % < 0, the solution can be

written as
Y L. [P
=—i- =+ — — k202,
w 12 i 1 v

In the first case, the frequency becomes a complex number, and in the second the frequency is
completely imaginary for given real k. How should we interpret this value? Lets substitute the
value for weak damping into the oscillation part of the plane wave

2
—i —ili\/kQUQ—L>t / z
i 2 4 ol 3 22 i
e lwt e ( =e 2’tep k*v 4

Hence, we can see that the real part of the frequency still corresponds to oscillations, but the
imaginary part represents the exponential decay of the amplitude with progressing time. The
decay constant in this case is 7, i.e. the stronger the damping, the faster the amplitude of the
oscillations decays to zero at the given point.

Similar method could be used for the solution of equation with first derivative in position.
This would lead again to the complex quadratic equation, but this time for the wavenumber,
which would become complex. There is one more remark left to be made — for a strong damping,
the frequency/wavenumber is purely imaginary. This means that the system does not exhibit
any oscillations, but only exponential decay in time or position, respectively.

Linearisation

Waves are almost omnipresent in continual physical systems. The reason behind this is very
similar to the ubiquity of harmonic oscillations in discrete systems. Close to an equilibrium
state, we can often approximate the dynamics of the system as waves. This process of so called
linearisation is carried out as follows. First, we select the variables where we expect the waves to
occur. Then, we approximate these variables as small displacements from equilibrium values. For
example, for a general variable u(z, t) we could write the approximation as u(z, t) & uo+ui(z,t),
where uo is the equilibrium value and wu(z,t) is a small displacement from this value in all
points and at all times. The specific definition of what it means for the displacement to be small
depends on the system in question. For the horizontally taut string, small would mean that the
displacement is always much smaller than the length of the string. This approximation is then
substituted into our dynamical equation, and we retain only the terms up to the first order in
u1. The resulting equation will be linear and often it will have the form of the wave equation
in u;. The process we just described is rather abstract, and we will try to explain it more in
terms of an example inspired by the waves in Bose-Einstein condensate.

Bose-Einstein condensate is a curious state of matter, which can only be attained by en-
sembles of bosons (specific type of particles) at very low temperatures. We will not explore the
specific nature of this state. We will only recognize that we can assign a wavefunction ¢ (x, t)
to this system, which obeys the so called Gross-Pitaevskii equation

d* 2, . dy
—a@+ﬂ|¢| ’l/)—lhgy

where « and 3 are positive real constants, & is a real constant (so called reduced Planck constant)
and 1 is generally complex. We will not attempt to derive a truly quantum solution, and we
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will apply several rather drastic approximations. Assume that there is a stationary solution g,
which is only a function of x and which is real. Then

d2wo

=8 |1/J | o .
Now, lets approximate the wavefunctlon as

Y(z,t) = Yo(x) +P1(z,t) ,
where 91 (z,t) < 1. Then

2 2
oS0 0S4 B o + ) (o 4 9D) (o + ) = DL,
where we used |1/J| = 1)*9. To the first order in 11, we have
2
a0 g o — oS 4 5 (uvi + 2ur8) = L

The first two terms cancel out, following from the equation of the statlonary solution. For the
remaining terms we carry out the Fourier substitution, which leads to

ak®1 + BYdwT + 28¢h1 = hwir .

The complex conjugate equation is
ak®yi + Byt + 2BY0YT = hwyi .

The sum of the previous two equations yields the following equation

ak® (1 + 91) + 3695 (1 + 97) = hw (1 +97) -
Dividing by ¥1 + ¥ = 2Re); leads to
k* + 365 = hw
This equation differs from true dispersion relation for waves in Bose-Einstein condensate, but
approaches the correct relation in the limit ak? > 3892. In this limit, the dispersion relation
is quadratic

a2
w = ﬁk ,
which is significantly different from the dispersion relation for waves on the string, where we

had w = v |k|. Similar process can be used to obtain dispersion relations for a large number of
systems, where the dynamical equations are known.

What comes next?

Some of these elementary pieces of knowledge about waves will be tested in the current problem
series. What will be the topic of our study after that? We will explore the generalisation of
normal modes for waves — we will understand the idea of wave polarisation and polarisation
vectors. We will also have a look at some more contemporary examples of waves. But, all that
only in the next episode of the series.
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