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Serial: Polarisation

In the previous episode of the serial, we explored the physics of waves in one dimension – the
string could oscillate only in the vertical direction, the particle was represented by a single com-
ponent wavefunction etc. Now, it is time to describe waves in more than one dimension, which
are interconnected. For example, we could think about string oscillating in both directions per-
pendicular to the equilibrium string direction, or think about waves in a charged liquid, where
local mass density, temperature and even charge density can oscillate. As specific examples, we
will consider slow waves in a plasma, which arise from the equations of magnetohydrodynam-
ics. For now though, let’s start with a more elementary example of a string oscillating in two
perpendicular directions.

Jump Rope
Consider a jump rope taut between two points, so that the tension in the jump rope is T . The
length mass density of the jump rope is ρ. Let the system of coordinates have an origin at one
of the points where the jump rope ends, and let the x axis be parallel to the direction of the
equilibrium jump rope shape. We will denote u the displacement of the jump rope from the
equilibrium position in the vertical direction (along the z axis) and v the displacement of the
jump rope in the horizontal direction (along y axis, perpendicularly to the tension direction).
A similar analysis can be carried out for each component separately, but it a more insightful
strategy is to redo the derivation in vector formalism.

We have derived that the force acting on a string element of length dx in the horizontal
direction is dF = T ∂2u

∂x2 dx. It is reasonable to assume that in this case, the oscillations in the
vertical direction will be independent of the oscillations in the horizontal direction, and hence
we can write for the force in the vertical direction dF ′ = T ∂2v

∂x2 dx, and therefore the total force
vector satisfies

dF = T
∂2u

∂x2 dx ,

where u = (u, v)T and dF = (dF, dF ′)T. Newton’s second law can be then written in vector
form as

dF = dm
∂2u

∂t2 = ρ dx
∂2u

∂x2

and therefore
∂2u

∂t2 = T

ρ

∂2u

∂x2 .

This is the two dimensional variant of the wave equation. Importantly, both displacements are
still functions of one time variable and one position variable, and hence we can do the Fourier
substitution as we are used to, which leads to

−ω2û = T

ρ

(
−k2) û ,
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where û is the complex vector displacement, and we have u = Re û, where the real part is taken
for each component of the vector separately. This can be seen as a set of algebraic equations,
which can be written in the matrix form as(

T
ρ

k2 − ω2 0
0 T

ρ
k2 − ω2

)(
û
v̂

)
=
(

0
0

)
,

where û and v̂ are the complex displacements in the separate directions. The Fourier substitution
assumes forms of the solution

û = u0eik x−iωt ,

v̂ = v0eik x−iωt ,

where u0 and v0 are potentially complex constants. Since the exponential part is identical for
both directions, the matrix equation can be rewritten as(

T
ρ

k2 − ω2 0
0 T

ρ
k2 − ω2

)(
u0
v0

)
=
(

0
0

)
.

To proceed, we recall the formalism used for the description of normal modes – a matrix
equation of this type has a non-trivial solution only if the determinant of the matrix is zero,
and therefore

0 =
∣∣∣∣ T

ρ
k2 − ω2 0

0 T
ρ

k2 − ω2

∣∣∣∣ =
(

T

ρ
k2 − ω2

)2

⇒ ω = ±
√

T

ρ
k .

We can see that we have recovered the dispersion relation, identical to the 1D one. The matrix
that satisfies this condition becomes a zero matrix, and therefore there are no conditions on u0
and v0, i.e. the wave on the string can be written as an arbitrary linear combination

û(x, t) = u0e±ik x−iωt

(
1
0

)
+ v0e±ik x−iωt

(
0
1

)
,

where the directions of propagation of the wave can be independent. The two component waves
of the overall wave are called the polarisations of the wave and the vector (u0, v0)T is called
the polarisation vector. How can we determine the constants u0 and v0? We need to consider
a specific wave to do that. So, consider a wave that causes the jump rope to move as when being
jumped over, i.e. it circles around the equilibrium position so that each element of the rope
moves along a circle with constant angular velocity, with radii of the circles differing for each
element. The radii increase towards the centre of the jump rope, where the amplitude reaches
the maximum. At time t = 0, the jump rope vector displacement can be written as

u(x, 0) =
(

A sin
(
πx
L

)
0

)
,

where A is a real constant. We also need to know the speed of the jump rope at time t = 0,
which can be written as

∂u

∂t
=
(

0
A ω sin

(
πx
L

)) .
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How can this motion be described in terms of wave polarisations? For a standing wave, we
would expect the motion to be a superposition of waves moving in opposite directions. Hence,
we propose the following form of the solution

û(x, t) =
(

u0
v0

)
eikx−iωt +

(
u1
v1

)
e−ik x−iωt .

At time t = 0 we therefore have

û(x, 0) =
(

u0eik x + u1e−ik x

v0eik x + v1e−ik x

)
=
(

(u0 + u1) cos(kx) + i (u0 − u1) sin(kx)
(v0 + v1) cos(kx) + i (v0 − v1) sin(kx)

)
.

The real part can be determined as

u(x, 0) =
(

(Re u0 + Re u1) cos(kx) + (Re(iu0) − Re(iu1)) sin(kx)
(Re v0 + Re v1) cos(kx) + (Re(iv0) − Re(iv1)) sin(kx)

)
.

In order to satisfy the initial conditions, we require k = π
L

and furthermore

Re u0 + Re u1 = 0 ,

Re(iu0) − Re(iu1) = A ,

Re v0 + Re v1 = 0 ,

Re(iv0) − Re(iv1) = 0 .

Since for any complex number
Re(iz) = − Im z

applies, we can write

Re u0 = − Re u1 ,

Re v0 = − Re v1 ,

Im v0 = Im v1 ,

Im u0 = Im u1 − A .

These are the first four equations for a total of eight unknowns (real and imaginary parts of u0,1
and v0,1). The other four equations can be derived from the equation for initial velocity of the
jump rope. Specifically,

∂û

∂t
= (−iω) û

and therefore
∂u

∂t
= ω

(
(Re(−iu0) + Re(−iu1)) cos(kx) + (Re u0 − Re u1) sin(kx)
(Re(−iv0) + Re(−iv1)) cos(kx) + (Re v0 − Re v1) sin(kx)

)
.

So, the remaining four equations are

Im u0 = − Im u1 ,

Re u0 = Re u1 ,

Im v0 = − Im v1 ,

Re v0 = Re v1 + A .
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The set is then solved by

u0 = −iA2 , v0 = A

2 ,

u1 = iA2 , v1 = −A

2 .

The complete time evolution of the wave is described by the expression

û(x, t) =
(

−i A
2 eik x + i A

2 e−ik x

A
2 eik x − A

2 e−ik x

)
e−iωt = A

(
sin
(
π
L

x
)

i sin
(
π
L

x
)) e−iωt ,

and for the real displacement

u(x, t) = A sin
(
π
L

x
)(cos(ωt)

sin(ωt)

)
.

Waves in Plasma
The direction in which the oscillation of waves occur does not, however, have to be a spatial
dimension. Instead, the oscillations can occur in different degree of freedom. This fact can be
demonstrated on a model of plasma. Plasma consists of charged particles, nuclei and electrons.
We will limit ourselves to slow dynamics, i.e. we will assume that any electron dynamic has
equilibrated and balanced the electric field in the plasma. Furthermore, we will assume that
values of all variables are only changing in the x direction of the cartesian system of coordinates
(imagine a narrow column of plasma). In this case the equations of magnetohydrodynamics are
the equations we need to solve. The equations are a set of two scalar differential equations and
two vector differential equations. We will present them now.

First equation is the so called continuity equation, which ensures that the mass in plasma
is conserved. The form of the equation is

∂ρ

∂t
+ ∂

∂x
(ρvx) = 0 ,

where ρ is the mass density of plasma and v = (vx, vy, vz)T is the velocity of the plasma. The
other scalar equation is the state equation of the plasma. Generally, the specific form of this
equation is hard to determine, so we use only a phenomenological variant, which states that(

∂

∂t
+ vx

∂

∂x

)(
P

ργ

)
= 0 ,

where P is the pressure in the plasma and γ is a real constant. If we modelled plasma as an
ideal gas, then γ would be the Poisson constant. The state equation ensures that the plasma
compresses adiabatically.

We now proceed to the vector differential equations. First equation is the so called Navier-
Stokes equation, which represents Newton’s second law for fluids

ρ
(

∂v

∂t
+ vx

∂

∂x
v
)

=

(− ∂P
∂x

0
0

)
− 1

µ0
B ×

 0
− ∂Bz

∂x
∂By

∂x

 ,

4



FYKOS Serial XXXIV.VI Polarisation

where B = (Bx, By, Bz)T is the magnetic field in plasma and × stands for a vector product.
This equation is harder to grasp, but it can be understood as a balance of two terms. On the
right-hand side, we have the forces acting on a unit volume of the fluid, both due to pressure
imbalance and magnetic field. On the left-hand side, we have the change of momentum of the
fluid per unit volume.

The last vector equation is the so called induction equation, which follows from Maxwell
equations and in our model it has the following form

∂B

∂t
=

 0
− ∂(v×B)z

∂x
∂(v×B)y

∂x

 .

A direct solution of these equations is clearly an extremely difficult task – we have a set
of non-linear differential equations. However, there exists a trivial solution describing the equi-
librium state ρ = ρ0, P = P0, v = 0 a B = B0, where variables with index 0 are constants
everywhere in space and time. The equations can be linearized around this equilibrium state,
which leads to a wave equation.

Without the loss of generality, we can assume that B0 lies in the xz plane, i.e. By0 = 0. In
order to linearize the equations, we will assume that the form of variables is as ρ = ρ0 +ρ1(x, t),
where |ρ1| ≪ |ρ0| for all times and positions. To carry out the linearisation, we substitute these
expressions into our equations and retain only terms up to first order in the “small” variables.
Also, we use v0 = 0

First equation is linearised as
∂ρ1

∂t
+ ρ0

∂v1x

∂x
= 0 .

Second equation requires a more detailed modification(
∂

∂t
+ v1x

∂

∂x

)(
P0 + P1

(ρ0 + ρ1)γ

)
= 0 .

Then, we can write

(ρ0 + ρ1)−γ = ρ−γ
0

(
1 + ρ1

ρ0

)−γ

≈ ρ−γ
0

(
1 − γρ1

ρ0

)
.

Retaining only terms up to the first order, we have

ρ−γ
0

(
∂

∂t
+ vx

∂

∂x

)(
P0 − P0

γρ1

ρ0
+ P1

)
= 0 .

Since P0 is constant and other terms in the second bracket are first order, only the time
derivative remains to the first order in our approximation, and hence (for non-zero density ρ0)

∂P1

∂t
− γP0

ρ0

∂ρ1

∂t
= 0 .

Navier-Stokes equation needs to be separated into components. Also, lets define α as the
angle between B0 and the x axis, so that B0x = B0 cos α, B0z = B0 sin α, where B0 = |B0|.
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Hence we can write (here without derivation, but the derivation does not contain any noteworthy
tricks)

ρ0
∂v1x

∂t
= −∂P1

∂x
− 1

µ0
B0 sin α

∂B1z

∂x
,

ρ0
∂v1z

∂t
= 1

µ0
B0 cos α

∂B1z

∂x
,

ρ0
∂v1y

∂t
= 1

µ0
B0 cos α

∂B1y

∂x
.

Similar decomposition can be used to determine three equations following from the induction
equation

∂B1x

∂t
= 0 ,

∂B1z

∂t
= B0 cos α

∂v1z

∂x
− B0 sin α

∂v1x

∂x
,

∂B1y

∂t
= B0 cos α

∂v1y

∂x
.

In total, we have eight equations for eight unknowns – 3 components of B1, 3 components
of v1 and ρ1 and P1.

In vector equations, we deliberately put the y components as last. The reason behind this
is to highlight the fact that these equations are independent from the rest of the equations –
unknowns v1y and B1y are present only in these two equations. This means that waves described
by these two equations is independent of the waves described by the remaining five equations.

The next step is already standard – we carry out the Fourier substitution for all variables
of type ρ1(x, t) → ρ̂1 = Aeikx−iωt, where A is a complex constant and ρ̂1 is the complex
displacement (in this case mass density displacement). All eight equations can then be written
as two matrix equations (one for unknowns v1y and B1y, one for the rest)(

−iωρ0 −ik 1
µ0

B0 cos α

ik B0 cos α iω

)(
v̂1y

B̂1y

)
=
(

0
0

)
,

−iωρ0 0 ik
µ0

B0 sin α 0 ik
0 −iωρ0 − ik

µ0
B0 cos α 0 0

ik B0 sin α −ik B0 cos α −iω 0 0
ik ρ0 0 0 −iω 0

0 0 0 iω γP0
ρ0

−iω




v̂1x

v̂1z

B̂1z

ρ̂1

P̂1

 =


0
0
0
0
0

 .

The trivial equation −iωB̂1x = 0 is not included here, and it simply requires that B̂1x = 0.
So, we have two potential wave types. In order to determine the dispersion relation, we need
to find the determinant of the matrix of the corresponding wave. In the following analysis, we
will only consider waves in v1y and B1y. These waves are called Alvén waves.

The determinant of the 2 × 2 matrix is readily determined as∣∣∣∣ ikB0 cos α iω
−iωρ0 −ik 1

µ0
B0 cos α

∣∣∣∣ = k2 1
µ0

B2
0 cos2 α − ω2ρ0 ,
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and from the condition that the determinant has to be equal to zero, we obtain the dispersion
relation

ω = B0 cos α
√

µ0ρ0
k .

This means that the waves have linear dispersion (same as sound or light waves) with phase
velocity

vp = B0 cos α
√

µ0ρ0
.

So, for field B0 pointing further away from the x direction, the waves move slower. In order
to determine the polarisation vectors of Alfvén waves, we substitute the result back into the
matrix equation (

ik B0 cos α i k B0 cos α√
µ0ρ0

−i k B0 cos α√
µ0

√
ρ0 −i k B0 cos α

µ0

)(
v̂1y

B̂1y

)
=
(

0
0

)
.

This means that the vector solution has the form(
v̂1y

B̂1y

)
=
(

ν
− ν√

µ0ρ0

)
,

where ν is a complex constant with dimensions of speed. So, we can see that the oscillations in
B1y are in exact antiphase to oscillations in v1y, and decrease with decreasing density of plasma
ρ0.

Final Remarks
In this series we explored different systems which exhibit rich variety of oscillatory or wav-
ing behaviour, close to some local minimum of energy. The world of waves is not, however,
limited to small oscillations, and different types of waves with similar characteristics (such as
the conservation shape during propagation) exist, but some of their properties are different.
For example, the equations that describe these waves may be non-linear, so the waves have
a specific amplitude. Non-linear equations are, however, significantly more difficult to solve,
mainly because we cannot apply the superposition principle. Such systems are an active area of
research. However, the linear waves and oscillations still occur in an abundance of systems and
we believe that the experience gained in this series will be valuable in your career in physics.
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