Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (84)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (145)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (151)vlnění (51)

kmitání

(10 bodů)6. Série 37. Ročníku - 5. kmitající magnety

figure

Mějme dva identické dipólové magnety, které upevníme tak, že se mohou bez tření otáčet ve stejné rovině. Jejich osy otáčení jsou tedy rovnoběžné a magnety leží v jedné rovině. Když magnety mírně vychýlíme z rovnovážné polohy, začnou kmitat. Najděte vlastní módy těchto kmitů a spočítejte jejich frekvence. Diskutujte, jak bude vypadat pohyb magnetů pro obecnou počáteční výchylku (tento případ už tedy nemusíte počítat). Magnety mají magnetický moment $m$, moment setrvačnosti kolem osy otáčení $J$ a vzájemná vzdálenost jejich středů je $r$.

(12 bodů)4. Série 37. Ročníku - E. kyvadlo ve větru

Změřte periodu kmitů torzního kyvadla v závislosti na délce vlákna. Použijte alespoň dva druhy materiálu závěsu. Co nejpřesněji určete všechny podstatné parametry, na kterých perioda závisí.

FYKOS zapomněl na experiment.

(10 bodů)5. Série 36. Ročníku - S. ethanol či methanol?

Vazebná energie molekuly fluoru je přibližně $37 \mathrm{kcal/mol}$. Pokud uvážíme dosah vazebných interakcí přibližně $3 \mathrm{\AA }$ od optimální vzdálenosti, jakou (průměrnou) silou musíme působit, abychom molekulu roztrhli? Spočítejte „tuhost“ molekuly fluoru, pokud by uprostřed tohoto rozmezí působila síla o velikosti této průměrné síly. Jaká by byla vibrační frekvence této molekuly? Srovnejte s experimentální hodnotou $916{,}6 \mathrm{cm^{-1}}$. ($4 \mathrm{b}$)

Zkuste pomocí Psi4 spočítat disociační křivku $\mathrm {F_2}$ a proložit ji v okolí minima parabolou. Jaká vám z ní tentokrát vyjde energie vibračních přechodů? ($3 \mathrm{b}$)

Máte dvě lahve alkoholu, které vám přišly přinejmenším podezřelé. Vzali jste je tedy do laboratoře a získali z nich následující Ramanova spektra. Pomocí programu Psi4 spočítejte, na jakých frekvencích jsou vibrační přechody molekul metanolu i etanolu, a na základě toho odhadněte, ve které lahvi je methanol a ve které ethanol. Můžete využít přibližné geometrie ethanolu a methanolu, které jsou součástí zadání na webu. ($3 \mathrm{b}$)

Ramanovo spektrum lahve A Ramanovo spektrum lahve B

Alkohol od Mikuláše?!

(10 bodů)3. Série 36. Ročníku - 5. kytarová

Mějme kytaru naladěnou při pokojové teplotě. O kolik půltónů (při temperovaném ladění) se přeladí jednotlivé struny, pokud se přesuneme k táboráku, kde bude o $10 \mathrm{\C }$ chladněji? Bude kytara stále znít naladěně? Vzdálenost mezi body upevnění strun je $d = 65 \mathrm{cm}$. Struny mají hustotu $\rho = 8~900 \mathrm{kg.m^{-3}}$, Youngův modul pružnosti $E = 210 \mathrm{GPa}$ a teplotní roztažnost $\alpha = 17 \cdot 10^{-6} \mathrm{K^{-1}}$.

Honzovi se opět rozladila kytara.

(3 body)1. Série 36. Ročníku - 1. užitečné máslo

Jarda se rozhodl upéct koláč, ale zjistil, že se v jeho kuchyňské váze vybila baterka a nemá jak odvážit $300 \mathrm{g}$ mouky. Napadlo ho však, že může použít kostku másla, na které je napsáno, že má hmotnost $m = 250 \mathrm{g}$. Naštěstí našel ještě vhodnou pružinu a stopky. Na velmi lehkou mističku nasypal hromádku mouky, připevnil na pružinu, rozkmital a změřil periodu $T_1=2,8 \mathrm{s}$. To stejné udělal s kostkou másla a naměřil $T_2 = 2,3 \mathrm{s}$. Poraďte Jardovi, kolik mouky má přidat nebo odebrat.

Když Jardu vyhodí z Matfyzu, otevře si pekárnu.

(8 bodů)1. Série 36. Ročníku - 5. a zase ta U-trubice

Do U-trubice s celkovou délkou $l$ a průřezem o obsahu $S$ nalijeme $V$ vody (tak, aby byl celý ohyb pod vodou a současně platilo $Sl > V$) a necháme ustálit hladinu. Jeden konec U-trubice uzavřeme a vodní hladinu rozkmitáme. Jaká bude perioda malých kmitů vodního sloupce?

Karlovi zase hráblo.

(5 bodů)4. Série 35. Ročníku - 3. kyvadlové nárazy

Dvě malé kuličky jsou upevněny na koncích provázků stejné délky ($l = 42,0 \mathrm{cm}$) a zanedbatelné hmotnosti. Opačné konce obou provázků jsou uchyceny v tomtéž bodě. Kuličky mají stejnou velikost, liší se však materiálem, z něhož jsou vyrobeny. Jedna je ocelová ($\rho _1 = 7~840 kg.m^{-3}$) a druhá duralová ($\rho _2 = 2~800 kg.m^{-3}$). Obě závaží pustíme z klidu s počáteční výchylkou $5\dg $, poté dojde k dokonale pružné srážce. Do jaké maximální výšky po ní jednotlivé kuličky vystoupí? Jak to dopadne po druhé srážce?

Karel chtěl ostatní hypnotizovat. Chce se vám řešit úlohu \dots

(7 bodů)4. Série 35. Ročníku - 4. analogie

Mějme dvě hookeovské pružiny s modulem pružnosti $E = 2,01 \mathrm{GPa}$ a píst s viskozitou $\eta = 9,8 \mathrm{GPa\cdot s}$. Závislost napětí $\sigma $ na relativním prodloužení $\epsilon $ je popsána vztahem $\sigma \_s = E\epsilon \_s$ pro pružinu a $\sigma \_d = \eta \dot {\epsilon }\_d$ pro píst, přičemž tečka zde značí derivaci podle času. Jednu pružinu délky $l\_s$ a píst délky $l\_d$ zapojíme do série a poté k nim paralelně připojíme druhou pružinu o délce $l\_p$. Celý tento systém pak náhlým roztažením uvedeme do stavu s $\epsilon _0 = 0,2$ a toto prodloužení dále držíme konstantní. Určete, za jak dlouho od roztažení poklesne napětí v systému na polovinu původní hodnoty, jestliže platí $\frac {l\_s}{l\_p} = 0,5$.

Mirek vymýšlel úlohy na zkoušce. Zase.

(9 bodů)6. Série 34. Ročníku - 5. těžká pružina

Mějme homogenní pružinu s tuhostí $k$ a hmotností $m$, jejíž šířka je zanedbatelná vůči její délce. Pružinu uchytíme na jednom konci tak, aby kolem něj mohla rotovat, a následně ji roztočíme úhlovou rychlostí $\omega $. Kolikrát se tato pružina při rotaci prodlouží? Vliv tíhového pole neuvažujte.

Jáchym měl velmi těžký den a chtěl se o něj podělit i s ostatními.

(10 bodů)6. Série 34. Ročníku - S. nabitá struna

Uvažujte napnutou strunu o délkové hustotě $\rho $, která je navíc rovnoměrně nabitá s délkovou nábojovou hustotou $\lambda $. Napětí ve struně je $T$. Struna se nachází v magnetickém poli o konstantní velikosti $B$, jež je ve směru struny v rovnovážné poloze. Vaším úkolem bude popsat několik aspektů kmitání této struny. Nejprve bude třeba sestrojit vlnovou rovnici. Zanedbejte indukční efekty (předpokládejte, že struna je perfektně izolující, a tedy nábojová hustota zůstává konstantní) a určete Lorentzovu sílu na jednotku délky pro malé oscilace struny v obou směrech kolmých na směr jejího napnutí. Tuto sílu použijte pro sestavení vlnové rovnice (ta dále obsahuje sílu plynoucí z napětí struny). Proveďte fourierovskou substituci a určete disperzní vztah v aproximaci malého pole $B$; konkrétně uvažujte členy do prvního řádu v $\beta = \frac {\lambda B}{k \sqrt {\rho T}} \ll 1$, kde $k$ je vlnové číslo. Určete dva polarizační vektory, tentokrát pouze do nultého řádu v $\beta $.

Nyní předpokládejte, že v určitém místě struny vytvoříme vlnu, která bude oscilovat pouze v jednom směru. V jaké vzdálenosti od původního bodu bude vlna stočená o devadesát stupňů?

Štěpán vzpomínal na třetí seriálovou úlohu.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz