Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (64)elektrický proud (67)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (246)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (143)relativistická fyzika (35)statistická fyzika (20)termodynamika (129)vlnění (46)

mechanika hmotného bodu

4. Série 15. Ročníku - S. rovnoměrně zrychlený pohyb

Mějme volný hmotný bod, jehož klidová hmotnost je $m_{0}$ a který je v naší vztažné soustavě v klidu. V čase $t = 0$ začne na hmotný bod v našem systému působit konstantní urychlující síla o velikosti $F$.

  • Vypočtěte časovou závislost rychlosti hmotného bodu v naší soustavě. Z této závislosti určete zrychlení hmotného bodu vůči našemu systému. (Řešte pouze pro časy $t>0$).
  • V každém okamžiku můžeme s uvažovaným hmotným bodem spojit tzv. klidovou inerciální soustavu. Jak již název napovídá, jedná se o inerciální systém, ve kterém je hmotný bod v daném okamžiku v klidu. S jakým zrychlením se hmotný bod pohybuje ve svých klidových soustavách? Jak velká síla na něj v těchto systémech působí?

6. Série 14. Ročníku - S. principy mechaniky

* Pomocí principu virtuálních prací nalezněte rovnovážnou polohu systému na obrázku, pokud navíc na konec tyče zavěsíme závaží o hmotnosti $M$.

* Dokažte tvrzení, které jsme při řešení pohybu Huygensova kyvadla použili pro pohyb po cykloidě, totiž, že velikost rychlosti pohybu vyšetřovaného bodu je rovna $2 \frac{\d z}{\d t}$.

Zadali autoři seriálu Honza Houštěk a Lenka Zdeborová.

5. Série 14. Ročníku - 2. dělo na lodi

Děla na bitevních lodích se nabíjejí následujícím způsobem: do hlavně se dá střela o hmotnosti $M$ a za ní určitý počet balíku s výbušninou (objem jednoho balíku je $V_{0})$, podle toho jak daleko chceme střílet. Kolikrát se zvětší dostřel takového děla, když nabijeme dvojnásobné množství výbušniny? Výbuch si představujte tak, že najednou se místo výbušniny objeví dvouatomový plyn o teplotě $T_{0}$ a tlaku $p_{0}$. Ráže děla je deset palců. Odpor vzduchu zanedbejte.

Nápad Karla Kouřila, když přemýšlel, co zadáme do FYKOSu.

5. Série 14. Ročníku - S. kolotoč

 

  • Mojmír a Anežka sedí přesně proti sobě na točícím se kolotoči. Ještě je sníh a tak si Mojmír připravil sněhovou kouli a na kolotoči ji chce hodit po Anežce. Poraďte mu, jakou rychlostí a jakým směrem (vzhledem ke kolotoči) má kouli hodit, aby Anežku zasáhl. Údaje jsou: vzdálenost obou od osy $R=3\;\jd{m}$, úhlová rychlost kolotoče $\omega =10~\jd{rad. s^{-1}}$.

Poznámka: Úlohu řešte v inerciální soustavě a předpokládejte, že Mojmír je schopný vrhnout kouli dostatečně rychle ve vodorovném směru. Lze tedy předpokládat pohyb koule po vodorovné přímce. Úloha nemá samozřejmě jednoznačné řešení, pokuste se najít nějaké reálné (odhadněte, jakou asi rychlostí se hází sněhové koule).

  • Načrtněte, narýsujte, odhadněte, vypočtěte, nasimulujte nebo nějak jinak zjistěte, jak bude v případě vašeho řešení části a) vypadat trajektorie koule v soustavě spojené s kolotočem a v nějakém bodě načrtněte zdánlivé síly, které na kouli působí.
  • Rozhodněte, která z následujících tvrzení jsou nepravdivá, a proč?
    • Z pohledu inerciální soustavy působí na rotující hmotný bod odstředivá síla, která vyrovnává dostředivou sílu, a proto se hmotný bod pohybuje rovnoměrně.
    • Odstředivá síla je reakcí na dostředivou sílu, neboť má stejnou velikost a opačný směr.
    • Když v inerciálním systému náhle přestane na rovnoměrně rotující těleso působit dostředivá síla, bude těleso pokračovat v pohybu po tečné přímce. Z pohledu neinerciálního systému se bude v důsledku působení odstředivé síly pohybovat po radiální přímce.

Zadali autoři seriálu Honza Houštěk a Lenka Zdeborová.

3. Série 14. Ročníku - S. sonda k Jupiteru

Uvažujme družici letící k Jupiteru kolmou na jeho dráhu. Její rychlost ve velké vzdálenosti od Jupitera je $v_{0}=10~000 \;\jd{m.s^{-1}}$. Družice proletí za Jupiterem, její minimální vzdálenost od jeho středu je přitom rovna trojnásobku Jupiterova poloměru. Určete výsledný směr a velikost rychlosti sondy.

Nápověda: Nejprve proveďte přechod do soustavy, ve které je Jupiter v klidu. V této soustavě pak spočtěte úhel $\phi$, o který se při pohybu po hyperbole změní směr rychlosti.

Zadali autoři seriálu podle úlohy ze 30. IPhO v Itálii.

2. Série 14. Ročníku - 2. skoky do nebe

Ze střechy 10 m vysokého domu pouštíme s nulovou počáteční rychlostí gumové míčky na chodník. Míčky jsou všechny stejně velké, mají však hodně rozdílné hmotnosti. Do jaké maximální výšky může některý z míčků vyskočit, máme-li jich k dispozici a) 2, b) $n$. Všechny rázy považujeme za dokonale pružné, veškeré odpory prostředí zanedbejme.

Zadala Lenka Zdeborová.

2. Série 14. Ročníku - 3. šroubovice

Mějme nekonečný drát stočený do pravotočivé šroubovice (helixu). Drát je rovnoměrně nabitý a osa helixu je totožná s osou $z$. Do vzniklého pole pošleme nabitou částici (drát je tenký, takže do něj částice nenarazí). V jistém časovém okamžiku známe její $p_{z}$ a $L_{z}$, tedy $z$ové komponenty hybnosti a momentu hybnosti. Můžeme v jiném okamžiku určit $p_{z}$, známe-li v tomto okamžiku $L_{z}?$

(Problém lze vyřešit zcela exaktně. Naproti tomu není určitě nezajímavé zkusit situaci počítačově simulovat a dostat tak hledanou závislost v podstatě experimentálně, v případě ověřit teoretickou předpověď.)

Navrhl Ruda Sýkora.

1. Série 14. Ročníku - S. autíčka

 

  • Autíčko o hmotnosti $m$ se rozjíždí z klidu tak, že výkon $P$ je konstantní. Určete závislost zrychlení, rychlosti a polohy na čase. Návod: znáte-li výkon, je jednoduché určit závislost kinetické energie autíčka na čase.
  • Autíčko jede při maximálním výkonu do kopce rychlostí

$v_{1}=95~\jd{km.h^{-1}}$. Ze stejného kopce dolů jede při plném výkonu rychlostí $v_{2}=162~\jd{km.h^{-1}}$. Jak rychle pojede po rovině? Odporová síla je úměrná $v^{2}$.

Zadal autor seriálu Pavel Augustinský.

6. Série 13. Ročníku - 1. brouček

Brouček o hmotnosti $m$ stojí na obruči o hmotnosti $M$ a poloměru $r$, tato obruč leží na absolutně hladkém vodorovném stole. Náhle se brouček něčeho lekne a dá se do běhu. Poběží po obruči. Vaším úkolem je popsat trajektorii středu obruče (za předpokladu nulového tření mezi obručí a stolem).

1. Série 13. Ročníku - 1. trhání nitě

Mějme pevně upevněný válec o poloměru $R_{V}$ umístěný ve vakuu mimo jakékoliv silové pole. K tomuto válci připevníme (např. přilepíme) jeden konec niti, která má mez pevnosti v tahu $σ_{t}$, poloměr $r$ a délku $l$, na jejímž druhém konci je upevněna olověná kulička o hmotnosti $m$. Nit napneme a kuličce udělíme rychlost $v_{0}$, jejíž směr bude kolmý na napnutou nit a na osu válce. Nit se začne na válec namotávat. Určete, v jaké vzdálenosti od válce se kulička utrhne a jaká bude v tomto okamžiku její rychlost.

Řešte nejprve obecně a pak pro hodnoty: $v_{0}=1\;\mathrm{m}\cdot \mathrm{s}^{-1}$, $m=2\;\mathrm{kg}$, $r=0,2\;\mathrm{mm}$, $σ_{t}=160\,\jd{MPa}$, $R_{V}=5\;\mathrm{cm}$, $l=2\;\mathrm{m}$.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz