Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (64)elektrický proud (67)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (246)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (143)relativistická fyzika (35)statistická fyzika (20)termodynamika (129)vlnění (46)

mechanika hmotného bodu

(6 bodů)3. Série 34. Ročníku - 4. větrníkový katapult

Malý myšák Joe se rád katapultuje z konce vrtule ventilátoru tak, že se jednoduše ve vhodnou dobu pustí a odletí. Kdy se má pustit, aby doletěl co nejdál? Vrtule má délku $l$ a otáčí se s úhlovou rychlostí $\omega $, přičemž rovina otáčení je kolmá na vodorovnou rovinu. Dodejme, že střed otáčení je ve výšce $h$ nad zemí.

Honza má rád každého kdo má rád katapulty.

(9 bodů)3. Série 34. Ročníku - 5. pašování ve vesmíru

Dvě vesmírné lodě letí v jedné přímce proti sobě. Jejich počáteční vzdálenost je $d$. První se pohybuje rychlostí $v_1$, druhá $v_2$ (ve stejné vztažné soustavě). První dokáže vyvinout maximální zrychlení $a_1$, druhá $a_2$ (obě v libovolném směru). Posádky lodí si chtějí předat nějaké „zboží“, ale k tomu potřebují, aby se lodě potkaly ve stejný čas na stejném místě a přitom měly stejnou rychlost. Za jaký nejmenší čas je toho možné dosáhnout? Relativistické jevy neuvažujte.

Jáchym drze ukradl původní Štěpánův nápad.

(10 bodů)3. Série 34. Ročníku - S. elektron v poli

Uvažujte částici s nábojem $q$ a hmotností $m$, která je přichycená k pružině o tuhosti $k$, jejíž druhý konec je ukotven v jednom bodě. Předpokládejte, že pohyb částice je omezen na pohyb v jedné rovině. Celý systém je v magnetickém poli o velikosti $B _ 0$, které je kolmé na rovinu pohybu částice. Pokusíme se popsat možné oscilace této částice. Začněte sestavením rovnic pohybu pro tuto částici - nezapomňte započítat vliv magnetického pole.

Poté předpokládejte oscilující pohyb pro obě kartézské souřadnice částice, a proveďte Fourierovskou substituci, tj. nahraďte derivace násobky $i \omega $, kde $\omega $ je frekvence oscilací. Vyřešte výslednou soustavu rovnic tak, abyste získali poměr amplitud oscilací a frekvenci oscilací. Takto získané řešení je poměrně složité, a abychom mu lépe porozuměli, je vhodné přiblížit si ho v jednoduším případě. Předpokládejte tedy dále, že magnetické pole je velmi silné, tj. $\frac {q ^ 2 B _ 0 ^ 2}{m ^ 2} \gg \frac {k}{m}$. Určete přibližnou hodnotu (hodnoty) $\omega $ v této aproximaci, hledejte vždy nejvyšší nenulový řád přiblížení. Dále načrtněte pohyb (pohyby) částice v reálném prostoru při této aproximaci.

Štěpán chtěl vytvořit klasický diamagnet.

(3 body)2. Série 34. Ročníku - 2. loď na obzoru

Kačka a Katka sledují loď plující konstantní rychlostí do přístavu. Kačka stojí na skále nad přístavem, přičemž má oči ve výšce $h_1 = 20 \mathrm{m}$ nad hladinou. Katka se nachází dole pod skálou, její oči jsou v nadmořské výšce $h_2 = 1,7 \mathrm{m}$. Pokud Katka zahlédne na obzoru vrchol blížící se lodi se zpožděním $t = 25 \mathrm{min}$ oproti Kačce, za jak dlouho loď vysoká $h = 30 \mathrm{m}$ dopluje do přístavu? Zemi považujte za dokonalou kouli se známým poloměrem.

Vzpomínky na dovolenou u moře.

(3 body)1. Série 34. Ročníku - 2. brzdi!

Karlovo auto, jedoucí rychlostí $v_0$, zastaví na vzdálenosti $s_0$ při použití konstantní brzdné síly $F_0$. Kolikrát delší bude brzdná dráha při stejné síle, ale dvojnásobné počáteční rychlosti? Kolikrát větší musí být brzdná síla, aby auto zastavilo na stejné dráze při dvojnásobné počáteční rychlosti?

Karel a Nemyslíš zaplatíš.

(5 bodů)1. Série 34. Ročníku - 3. cyklistický anemometr

Vašek jede za větrného počasí na kole. Jede-li rovně rychlostí $v = 10 \mathrm{km\cdot h^{-1}}$, naměří, že proti němu fouká vítr vodorovně pod úhlem $25\dg $ od směru jízdy. Při vyšší rychlosti $v' = 20 \mathrm{km\cdot h^{-1}}$ je tento úhel už jenom $15\dg $. Určete rychlost a směr větru vzhledem k nehybnému pozorovateli.

Vašek si říkal, že na něj při jízdě fouká až moc.

(8 bodů)1. Série 34. Ročníku - 4. solární plachetnice

Ve vzdálenosti $0,8 \mathrm{au}$ od Slunce se vznáší solární plachetnice ve tvaru tenké desky o ploše $S = 500 \mathrm{m^2}$ s plošnou hustotou $\sigma =1,4 \mathrm{kg\cdot m^{-2}}$. Jakou silou na ni působí záření dopadající ze Slunce v okamžiku, kdy se plachetnice právě začíná pohybovat? Jaké bude v mít tu chvíli zrychlení? Zářivý výkon Slunce je $L_{\odot } =3,826 \cdot 10^{26} \mathrm{W}$. Předpokládejte, že záření dopadá na plachetnici kolmo a odráží se pružně.

Nápověda: Doporučujeme najít zrychlení při malé počáteční rychlosti $v_0$ a poté dosadit $v_0 = 0$.

Danka si chce zalétat.

(8 bodů)1. Série 34. Ročníku - 5. jak si navléci čepici jednou rukou?

figure

Mějme kouli o poloměru $R$ a cyklickou nehmotnou gumičku o poloměru $r_0$ s tuhostí $k$, přičemž $r_0 < R$. Třecí koeficient mezi gumičkou a koulí je $f$. Určete podmínku pro hodnoty těchto parametrů, aby bylo možné přetáhnout gumičku přes kouli tak, že se gumičky budeme dotýkat jenom v jednom bodě.

Pro jednoduchost uvažujte, že gumička je pružná pouze v tečném směru (takže vždy leží v jedné rovině).

Matěj měl plnou ruku a byla mu zima na hlavu.

(13 bodů)1. Série 34. Ročníku - E. dopadová

Změřte závislost průměru kráteru, vzniklého dopadem kamene do vhodného pískoviště, na hmotnosti kamene a na výšce vypuštění. Závisí velikost kráteru jenom na energii dopadu? Doporučujeme měřit, když je písek suchý.

Dodo se vrátil do dětství.

(10 bodů)1. Série 34. Ročníku - S. kmitáme

figure

Seriál začneme zkoumáním několika mechanických oscilátorů, u kterých nás bude zajímat především určení frekvence volných kmitů. Dále si zopakujeme, jak vypadá oscilátor ve fázovém prostoru.

  1. Uvažujme dutý nehmotný kužel, do jehož špičky vložíme kámen o hmotnosti $M$. Kužel ponoříme špičkou napřed do vody o hustotě $\rho $, ve které bude plovat. Určete rovnovážnou hloubku ponoru kužele měřenou od špičky $h$, pokud je celková výška kužele $H$ a poloměr základny $R$. Dále nalezněte úhlovou frekvenci malých vertikálních kmitů kuželu.
  2. Představme si závaží o hmotnosti $m$ přidělané na nehmotné pružině o tuhosti $k$ a klidové délce $L$. Pokud pružinu na druhém konci upevníme, dostaneme kyvadlo. Spočítejte přirozenou úhlovou frekvenci jeho oscilací, přičemž předpokládejte, že délka pružiny se během pohybu nemění. Následně určete malý rozdíl v úhlové frekvenci $\Delta \omega $, o který se úhlová rychlost tohoto kyvadla liší od případu, ve kterém je pružina nahrazena nedeformovatelnou tyčí se stejnou klidovou délkou. Přitom předpokládejte $k L \gg m g$.
  3. V terénu, který se skládá z periodicky se opakujících parabol s výškou $H$ a šířkou $L$, se nachází kostka cukru s hmotností $m$. Popište její potenciální energii jako funkci souřadnice v horizontálním směru a následně načrtněte možné trajektorie jejího pohybu ve fázovém prostoru v závislosti na rychlosti $v_0$, kterou má při průchodu vrcholem paraboly. Na náčrtku označte všechny významné vzdálenosti. Pro výchylku použijte horizontální souřadnici, vhodně přizpůsobte jednotky hybnosti v horizontálním směru. Při výpočtech zanedbejte kinetickou energii pohybu kostky ve vertikálním směru a předpokládejte, že stále zůstává v kontaktu s terénem.

Štěpán našel pár základních oscilátorů.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz