Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (64)elektrický proud (67)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (246)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (143)relativistická fyzika (35)statistická fyzika (20)termodynamika (129)vlnění (46)

mechanika hmotného bodu

(3 body)4. Série 32. Ročníku - 2. utrhne se

Máme (nehmotný) provázek délky $l$ a na jeho konci kuličku (hmotný bod) s hmotností $m$. Víme, že maximální tíha, co unese, je síla $F = mg$, kde $g$ je místní tíhové zrychlení, ale už nic víc. Provázek upevníme a kuličku budeme držet ve stejné výšce jako je místo upevnění, akorát ve vzdálenosti délky provázku, ale tak abychom ho nenapínali. Kuličku uvolníme a ta se začne vlivem tíhového zrychlení pohybovat. Pod jakým úhlem provázku vůči svislé rovině se provázek přetrhne?

Karel si říkal, že to nevydrží.

(7 bodů)4. Série 32. Ročníku - 4. trampolína

Dva hmotné body skákaly na trampolíně do výšky $h_0 = 2 \mathrm{m}$. Ve chvíli, kdy oba byly v nejnižším možném místě trajektorie (výchylka $y = 160 \mathrm{cm}$), jeden z nich záhadně zmizel. Do jaké nejvyšší výšky byl druhý vymrštěn? Kruhová trampolína má obvod $o = 10 \mathrm{m}$ a pruží díky $N = 42$ pružinám s tuhostí $k = 1720 \mathrm{N\cdot m^{-1}}$. Trampolínu modelujme $N$ pružinami rozmístěnými rovnoměrně a spojenými ve středu. Hmotnost zmizelého hmotného bodu je $M = 400 \mathrm{kg}$.

Ivo hlídal bratrance.

(8 bodů)3. Série 32. Ročníku - 5. bodová

Uvažujme hmotný bod umístěný v jednodimenzionálním prostoru. Jeho počáteční pozice i rychlost je nulová. Bod se dokáže pohybovat s libovolným zrychlením z intervalu $\left (- a , a\right )$. Nazvěme $M\left (t\right )$ množinu všech možných stavů $\left (x, v\right )$ takových, že bod se v čase $t$ může nacházet na pozici $x$ a zároveň mít rychlost $v$. Sestrojme graf závislosti $v$ na $x$ v čase $t$. Množina $M\left (t\right )$ v tomto grafu vytvoří plochu $S\left (t\right )$. Analyticky popište křivky ohraničující $S\left (t\right )$.

Bonus: Najděte funkční závislost $S\left (t\right )$.

Jáchym chtěl jistou triviální úlohu řešit jako speciální případ této.

(7 bodů)2. Série 32. Ročníku - 4. lunar lander

Jak má řídící elektronika přistávacího modulu Apolla dávkovat tah $T$ motoru (a tedy regulovat spotřebu paliva) směřující směrem dolů, aby se loď snášela na povrch Měsíce rovnoměrným přímočarým pohybem? Efektivní rychlost spalin motoru je $u$. Loď již zbrzdila svůj pohyb po orbitě a sestupuje přímo dolů v homogenním gravitačním poli se zrychlením $g$. Počáteční hmotnost modulu je $m_0$.

Bonus: Jak má elektronika dávkovat tah při přistání z výšky $h$ a počáteční rychlosti $v_0$, aby přístání bylo tzv. pádem z nulové výšky a minimalizovala se spotřeba paliva? Maximální tah motoru je $T\_{max}$.

(9 bodů)2. Série 32. Ročníku - 5. kladka a pták

Ke stropu je zavěšená pevná kladka a je na ni navlečeno lano tak, aby jeho levý i pravý konec byly ve stejné hloubce. Na jednom konci visí pták Fykosák a na druhém konci závaží, které má stejnou hmotnost jako pták. V počátečním stavu jsou pták i závaží nehybné. Popište, co se bude se soustavou dít, začne-li pták Fykosák lézt vzhůru (po svém vlastním lanu) s použitím konstantní síly. Nejprve předpokládejte, že lano je nehmotné a kladka je ideální. Poté počítejte s délkovou hmotností lana $\lambda $, jeho délkou $l$, momentem setrvačnosti kladky $J$ a jejím poloměrem $r$. Předpokládejte, že lano na kladce neprokluzuje.

Mirek přepsal úlohu od Lewise Carolla do FYKOSího tvaru.

(12 bodů)2. Série 32. Ročníku - E. listopad

Změřte průměrnou vertikální rychlost padajícího listí. Použijte listy z několika různých stromů a diskutujte, jaký vliv má tvar listu na rychlost pádu. Jak by měl vypadat ideální list, pokud bychom chtěli, aby padal co nejpomaleji?

Napadla Jáchyma, když se ptal kamaráda, jestli nezná nějaký zajímavý experiment.

(3 body)1. Série 32. Ročníku - 2. ohňostroj

Jáchym odpaloval ohňostroj, který si můžeme představit jako světlici, která je v určitý čas vystřelena rychlostí $v$ směrem svisle nahoru, a poté za nějaký čas vybuchne. Jáchym stál ve vzdálenosti $x$ od místa odpalu, když uslyšel zvuk výstřelu. Za čas $t_1$ uviděl výbuch a za čas $t_2$ po zpozorování výbuchu ho i uslyšel. Spočítejte rychlost $v$.

Jáchym v sobě pyrotechnika nezapře.

(7 bodů)1. Série 32. Ročníku - 4. pád z okna

Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.

Nápověda: Pro radu jděte k panu Dopplerovi.

Matěj se rád dívá z ok(n)a.

(10 bodů)1. Série 32. Ročníku - S. teoretická mechanika

Předtím než se začneme věnovat umění analytické mechaniky, je vhodné si zopakovat klasickou mechaniku na následující sérii příkladů.

  1. Na vrcholu křišťálové koule dřepí homogenní kulička s velmi malým poloměrem. Kuličce udělíme libovolně malou rychlost a ta tak začne padat po povrchu koule. Kde se kulička odpojí od křišťálové koule? Uvažujte, že kulička neprokluzuje.
  2. Místo koule z předchozí úlohy máme křišťálový paraboloid, daný rovnicí $y = c - ax^2$. Opět nás zajímá, kde se kulička od paraboloidu odpojí?
  3. Cyklista odbočuje rychlostí $v$ na cestu kolmou k té, po které právě jede. Zatáčku projede po části kružnice s poloměrem $r$. Jak moc se musí cyklista do zatáčky naklonit? Moment setrvačnosti kol bicyklu můžete zanedbat, cyklistu nahraďte hmotným bodem.
    Bonus: Moment hybnosti kol nemůžete zanedbat.

(8 bodů)6. Série 31. Ročníku - 5. skok z letadla

Filip o hmotnosti $80 \mathrm{kg}$ vyskočil z letadla, které je ve výšce $h_1 =500 \mathrm{m}$ nad zemí. Ve stejném okamžiku z druhého letadla skočila Danka o hmotnosti $50 \mathrm{kg}$, ale z výšky $h_2 =569 \mathrm{m}$ nad zemí. Předpokládejme, že oba mají stejný odporový koeficient $C = 1{,}2$, Filipova plocha příčného průřezu je $S_f = 2{,}2 \mathrm{m^2}$ a Dančina je $S_d=1{,}5 \mathrm{m^2}$. Hustota vzduchu $\rho =1{,}205 \mathrm{kg\cdot m^{-3}}$ se nemění s výškou. Za jakou dobu od výskoku bude Danka ve stejné výšce nad zemí jako Filip?

Danka uvažovala nad náročným životem Matfyzáka, tak se chtěla trochu odreagovat.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz