Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (64)elektrický proud (67)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (246)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (143)relativistická fyzika (35)statistická fyzika (20)termodynamika (129)vlnění (46)

mechanika hmotného bodu

(2 body)1. Série 29. Ročníku - 2. výskok z vlaku

Ve vlaku, který se může pohybovat po kolejích bez tření, stojí 2 lidé, každý s hmotností $m$. Kdy dosáhne vlak větší rychlosti? Když oba vyskočí z vlaku naráz, nebo když budou vyskakovat z vlaku postupně? Člověk vyskočí z vlaku relativní rychlostí $u$ (rychlost vyskakujícího člověka vůči vlaku po výskoku).

Radomír vyskakoval z vlaku.

(4 body)5. Série 28. Ročníku - 3. matfyzácká honička

$N$ lidí se rozhodne hrát na honěnou, ale ne jen tak ledajakou. Na začátku se rozmístí do vrcholů pravidelného $N$-úhelníku o straně délky $a$. Hra poté probíhá tak, že každý honí (to znamená běží přímo za ním) svého souseda po pravé ruce (proti směru hodinových ručiček). Každý se přitom pohybuje rychlostí o konstantní velikosti $v$. Popište průběh hry (trajektorie, po kterých se hráči pohybují) a zjistěte, za jak dlouho hra skončí v závislosti na parametrech $N$, $a$, $v$.

Kuba Vošmera maturant.

(4 body)5. Série 28. Ročníku - 4. lijavec

Podzimní počasí je občas stejně rozmařilé, jako to jarní, a tak nás nezřídka může na cestě zastihnout nečekaný liják. Někteří šťastlivci s sebou nosí deštník. Odhadněte, jak velkým tlakem dokáže hustý déšť na deštník působit a porovnejte tíhovou sílu deštníku s tlakovou silou deště. Parametry deštníku vhodně zvolte.

Mirek hledal důvody, proč nezávidět kolemjdoucím jejich záštitu proti dešti.

(6 bodů)5. Série 28. Ročníku - S. mapovací

 

  • Ukažte, že pro libovolné hodnoty parametrů $K$ a $T$ můžete Standardní mapu ze seriálu vyjádřit jako

$$x_{n} = x_{n-1} y_{n-1},$$

$$\\ y_n = y_{n-1} K \sin(x),$$

kde $x$, $y$ jsou nějak přeškálovaná $dφ⁄dt$, $φ$. Určete fyzikální rozměr $K$, $x$, $y$.

  • Podívejte se znova na model nakopávaného rotoru ze seriálu a vezměte tentokrát předávaný impuls $I(φ)=I_{0}$, po periodě $T$ pak $I(φ)=-I_{0}$, po další zase $I_{0}$ a takto dokola kopejte rotor tam a zpátky.
  • Napište mapu $φ_{n},dφ⁄dt_{n}$ na základě hodnot $φ_{n-1},dφ⁄dt_{n-1}$ před dvojkopem ± $I_{0}$.
  • Bude zkonstruovaná mapa chaotická? Proč ne?
  • Vyřešte $φ_{n},dφ⁄dt_{n}$ na základě nějakých počátečních podmínek $φ_{0},dφ⁄dt_{0}$ pro libovolné $n$.

Bonus: Zkuste podle ingrediencí ze seriálu navrhnout kopání, které bude dávat chaotickou dynamiku. Dávejte ale pozor na to, že $φ$ je 2π-periodické a že by se vám $dφ⁄dt$ nemělo vyšroubovat kopáním do nekonečna.

(4 body)4. Série 28. Ročníku - 3. nerozlučné pouto

Dva sešity A460 zasuneme do sebe tak, že se střídají listy jednoho a druhého sešitu, a položíme je na vodorovný stůl. Jakou práci musíme vykonat, abychom sešity od sebe oddělili, jestliže na sebe listy působí pouze vlastní vahou? Předpokládejte, že taháme v rovině sešitů kolmo na hřbet jednoho z nich a že se na začátku listy zcela překrývají.

Mirkovi se nedařilo oddělit algebru od analýzy.

(4 body)4. Série 28. Ročníku - 4. ach ta tíže

Určete, jaké je tíhové zrychlení na povrchu neutronové hvězdy v závislosti na rovnoběžce. Jak velká slapová síla by působila na předmět vysoký $h=1\;\mathrm{m}$ a s hmotností $m=1\;\mathrm{kg}$ v blízkosti jejího povrchu? S jakou energií by dopadl na povrch neutronové hvězdy marshmallow upuštěný z výšky $h?$ Neutronová hvězda má poloměr $R$ a rotuje s periodou rotace $T$. Můžete ji považovat za kulovou, i když přesně kulová není. Najděte si hodnoty pro typickou neutronovou hvězdu a udejte jak obecné, tak konkrétní číselné výsledky.

Karel se zasnil nad drtivou silou neutronových hvězd a jejich skvělou neinercialitou.

(4 body)4. Série 28. Ročníku - 5. vrhač nožů

Vrhací nůž opustí ruku ve chvíli, kdy je jeho těžiště ve výšce $h$ a má pouze horizontální složku rychlosti $v_{0}$. Jakou musí mít úhlovou rychlost rotace $ω$, aby se zasekl do svislé desky vzdálené $dod$ místa vypuštění? Pro zjednodušení uvažujte, že těžiště nože je přesně v polovině jeho délky $l$ a že se nůž zasekne vždy, když se jeho čepel dotkne desky dříve než rukojeť.

Mirkovy pokusy s vrháním nožů se vymykaly statistickým předpokladům.

(8 bodů)3. Série 28. Ročníku - E. tenisky na vodě

Změřte koeficient statického a dynamického tření mezi teniskou (botou) a vodorovným hladkým povrchem v situacích, kdy je povrch suchý a kdy je mokrý. Výsledky srovnejte a interpretujte.

Karel uklouznul na suchu.

(6 bodů)3. Série 28. Ročníku - S. numerická

 

  • Podívejte se na rovnice Lorenzova modelu a sepište skript na jeho simulaci v Octave (na to si případně osvěžte i druhý díl seriálu). Spolu s vykreslujícím příkazem by váš skript měl vypadat zhruba takto: …

function xidot = f(t,xi)

xdot=…;

ydot=…;

zdot= …;

xidot = [xdot;ydot;zdot];

endfunction

nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);

pocPodminka=[0.2,0.3,0.4];

reseni=ode45(@f,[0,300],pocPodminka,nastaveni);

plot3(reseni.y(:,1),reseni.y(:,2),reseni.y(:,3)); </pre> Jen místo tří teček doplňte zbytek programu podobně jako v druhém dílu seriálu a použijte $σ=9,5$, $b=8⁄3$. Pak zjistěte alespoň s přesností na jednotky, pro jaké kladné $r$ přechází systém z asymptotického zastavování se na chaotickou oscilaci (na počátečních podmínkách nezáleží).

  • Zde je plný text octavovského skriptu pro simulaci a vizualizaci pohybu částice v gravitačním poli hmotného tělesa v rovině $xy$, kde všechny parametry a konstanty jsou rovny jedné: clear all

pkg load odepkg

function xidot = f(t,xi)

alfa=0.1;

vx=xi(3);

vy=xi(4);

r=sqrt(xi(1)^2+xi(2)^2);

ax=-xi(1)/r^3;

ay=-xi(2)/r^3;

xidot = [vx;vy;ax;ay];

endfunction

nastaveni = odeset('InitialStep', 0.01,'MaxStep',0.1);

x0=0;

y0=1;

vx0=…;

vy0=0;

pocPodminka=[x0,y0,vx0,vy0];

reseni=ode45(@f,[0,100],pocPodminka,nastaveni)

plot(reseni.y(:,1),reseni.y(:,2));

pause()</pre>

  • Zvolte počáteční podmínky $x0=0,y0=1,vy0=0$ a počáteční rychlost ve směru $x$ nenulovou tak, aby byla částice vázaná, tj. neulétla z dosahu centra.
  • Přidejte ke gravitační síle ve skriptu sílu $-α\textbf{r}⁄r^{4}$, kde $αje$ malé kladné číslo. Volte postupně několik zvětšujících se $α$ počínaje $α=10^{-3}$ a ukažte, že způsobují kvaziperiodický pohyb.

(5 bodů)2. Série 28. Ročníku - 5. gravitační manévry

Máme družici, která obíhá Slunce po eliptické dráze. Pokud zmenšíme rychlost v afelu $v_{a}$ na 4⁄5 původní rychlosti (tj. na 4⁄5$v_{a})$, jak se změní rychlost družice v periheliu? Vyjádřete novou rychlost za pomoci původní rychlosti $v_{p}$ a parametrů elipsy (hlavní poloosa $a$ a relativní excentricita $ε)$.

Karel byl na přednášce o gravitačním praku.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz