Vyhledávání úloh podle oboru
Databáze úloh FYKOSu odjakživa
astrofyzika (82)biofyzika (18)chemie (21)elektrické pole (69)elektrický proud (73)gravitační pole (79)hydromechanika (141)jaderná fyzika (42)kmitání (54)kvantová fyzika (31)magnetické pole (40)matematika (88)mechanika hmotného bodu (286)mechanika plynů (85)mechanika tuhého tělesa (217)molekulová fyzika (71)geometrická optika (76)vlnová optika (63)ostatní (162)relativistická fyzika (37)statistická fyzika (21)termodynamika (148)vlnění (51)
ostatní
(13 bodů)2. Série 33. Ročníku - E. potřebuji obejmout
Změřte svůj objem několika různými způsoby.
Matěj se koupal ve vaně.
(10 bodů)2. Série 33. Ročníku - P. Země vzplála
Odhadněte, o kolik by stoupl obsah $\ce {CO2}$ v atmosféře, pokud by shořela veškerá vegetace na zemském povrchu.
Karel je pyroman.
(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky
- Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
- Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?
\setcounter {enumi}{2}
- Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
- Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
- Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.
Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.
Karel generoval problémy.
(10 bodů)1. Série 33. Ročníku - P. ničitel planet
Jak velká by mohla být co nejmenší a nejlehčí zbraň, která by dokázala zničit planetu? Samozřejmě ještě v rozumném čase v rámci lidského života a čím rychleji, tím lépe.
Karel se moc dívá na sci-fi, tentokrát na úvodní titulky Muži v černém II.
(10 bodů)1. Série 33. Ročníku - S. pomalý rozjezd
- Vyjádřete následující veličiny1) pomocí základních jednotek SI.
- $\jd {F}\cdot \Omega $, kde $\jd {F}$ je farad a $\Omega$ je ohm
- $\jd {N}\cdot \jd {Pa}$, kde $\jd {N}$ je newton a $\jd {Pa}$ je pascal
- $\dfrac {\jd {C}\cdot \jd {V}}{\jd {J}}$, kde $\jd {C}$ je coulomb, $\jd {V}$ je volt a $\jd {J}$ je joule
- $\dfrac {\jd {T}\cdot \jd {Wb}}{\jd {H}\cdot \jd {Sv}}$, kde $\jd {H}$ je henry, $\jd {Sv}$ sievert, $\jd {T}$ tesla a $\jd {Wb}$ weber
- V následujících tvrzeních nalezněte všechny chyby a popište, proč jde o chyby. (2 body)
- $s = vt^2/2 = 5{,}2 \cdot 1{,}2^2 /2 = 3{,}744 \mathrm{m} . $
- $y\_m \sin \( 2 \pi \omega \) = 15 cm \cdot \sin \( 2 \cdot 3{,}141 \cdot 50 Hz \) \doteq 0 cm $
- Pro experimenty jsme použili úspěšně sadu gamabeta. Na základě měření radioaktivního rozpadu Uranu ve smolinci jsme zjistily, že náš vzorek má aktivitu přesně 532,24 bequerelů.
- $s = 1{,}23 \mathrm{m}$, $t = 2{,}7 \mathrm{s} \Rightarrow v = s/t \doteq 0{,}46 \mathrm{m\cdot s^{-1}}$, $m = 240 \mathrm{g}$, $E = mv^2/2 \doteq 25 \mathrm{J}$, $P = E/t \doteq 9{,}3 \mathrm{W}$
- Jakou silou působí vítr na korunu stromu? Víme, že to má souvislost s rychlostí větru $v$, průřezem stromu vystaveného větru $S$ a hustotou vzduchu $\rho $. Proveďte rozměrovou analýzu a na jejím základě určete vztah pro sílu.
- Sestavte podobnostní číslo odpovídající situaci, ve které protlačujeme kapalinu skrz charakteristickou délku $l$ pomocí gradientu tlaku $\dfrac {\d p}{\d x}$ (případně si tuto veličinu představte jednoduše jako změnu tlaku se vzdáleností $\dfrac {\Delta p}{\Delta x}$). Kapalina má hustotu $\rho $ a kinematickou viskozitu $\nu $. Určete, jaké všechny varianty tohoto podobnostního čísla existují. Jednu z nich si vyberte a pokuste se jí interpretovat.
- Bonus: Vymyslete co nejoriginálnější Planckovu jednotku (veličinu sestavenou z kombinace redukované Planckovy konstanty $\hbar $, gravitační konstanty $G$, rychlosti světla $c$, Boltzmannovy konstanty $k\_B$ a Coulombovy konstanty $k\_e$, přičemž nemusí obsahovat všechny). Popište její odvození a okomentujte její hodnotu. Nejzajímavější zmíníme v brožurce s řešeními.
Karel chce trhat rekordy v délce zadání.
(3 body)5. Série 32. Ročníku - 2. hloubka vniku do koule
Představte si, že máte podchlazenou plnou kovovou homogenní kouli, kterou vytáhnete z mrazáku, který máte nastavený na opravdu nízkou teplotu. Zajímalo by vás, jak rychle se bude zvyšovat její teplota, když ji umístíte do zahřáté místnosti. Protože by to jinak byl vysokoškolský problém, tak jsme pro vás úlohu zjednodušili. Ptáme se na odhad hloubky vniku (v metrech) „teplé oblasti“ do koule, který můžete získat rozměrovou analýzou. Přičemž známe relevantní parametry koule, konkrétně hustotu $\left [ \rho \right ] = \jd {kg.m^{-3}}$, měrnou tepelnou kapacitu $\left [c\right ] = \jd {J.kg^{-1}.K^{-1}}$ a její součinitel tepelné vodivosti $\left [ \lambda \right ] = \jd {W.m^{-1}.K^{-1}}$ a zajímá nás závislost na čase $\left [t\right ] = \jd {s}$.
Karel se inspiroval problémem z Eötvös Competition.
(10 bodů)4. Série 32. Ročníku - S. lagrangeovská
V závere seriálu ste si určite všimli Lagrangián a diferenciálnu rovnicu, ktoré akoby „spadli z neba“. To nie je vôbec náhoda, veľkou časťou tejto seriálovej úlohy bude tieto dve rovnice odvodiť.
- Ukážte, že ak máme pohyb častice v ľubovoľnom centrálnom poli, teda v poli, kde potenciál závisí len na vzdialenosti, bude sa častica zaručene pohybovať len v rovine.
Návod: Zostavte Lagrangeove rovnice II. druhu pre túto situáciu, použite pri tom vhodné zovšeobecnené súranice. Následne bez ujmy na všeobecnosti položte súradnicu $\theta = \pi /2$ a počiatočnú rýchlosť v smere tejto súradnice nulovú. Zamyslite sa a vysvetlite, prečo je takáto voľba v poriadku a nestratíme pri nej žiadne riešenie.
- Zostavte Lagrangián pre hmotný bod pohybujúci sa v rovine v centrálnom poli. Mali by ste dostať ten istý, ako je uvedený v závere seriálu. Pre tento Lagrangián následne nájdite všetky intergály pohybu a pomocou nich nájdite diferenciálnu rovnicu prvého rádu pre premennú $r$. Pre vašu kontrolu, mala by vám vyjsť rovnako ako na konci seriálu.
- Zamyslite sa, ako určiť uhlovú vzdialenosť medzi dvoma bodmi na sfére, ak máte zadané ich sférické súradnice. Ukážte to napríklad pre hviezdy Betelgeuze a Sírius, ktorých súradnice si nájdite.
Pomôcka: Táto úloha sa dá jednoducho vyriešiť aj bez znalosti sférickej trigonometrie.
(10 bodů)6. Série 31. Ročníku - S. Matice a populace
- Na základě Lotkova-Volterrova modelu simulujte vývoj populace predátora a kořisti (např. slunéčka sedmitečného a mšice makové) pro následující hodnoty parametrů: $r\_m = 0{,}8$, $D\_m = 1{,}0$, $r\_s = 0{,}75$, $D\_s = 1{,}5$. Počáteční populace volte po dvojicích jako $m = 0{,}5$ a $s = 2{,}0$; $m = 1{,}5$ a $s = 0{,}5$; $m = 1{,}95$ a $s = 0{,}75$. Výsledek zaneste do grafu závislosti populace predátora na populaci kořisti. Výsledky diskutujte.
Bonus: Nalezněte tvar křivek v grafu pomocí analytických metod (integrací diferenciální rovnice). - Použitím kompetitivního Lotkova-Volterrova modelu simulujte vývoj dvou soupeřících populací s omezenou populační kapacitou (např. káně lesní a poštolka obecná) pro tyto hodnoty parametrů: $r\_k = 0{,}8$, $I\_{kp} = 0{,}2$, $k\_k = 2{,}0$, $r\_p = 0{,}6$, $I\_{pk} = 0{,}3$, $k\_p = 1{,}0$. Počáteční populace volte jako $k = 0{,}01$, $p = 1{,}0$. Poté změňte interakční koeficienty na $I\_{kp} = 1{,}5$ a $I\_{pk} = 0{,}6$, zbytek ponechejte. Výsledky zaneste do jednoho grafu závislosti velikosti populací na čase, diskutujte.
- Ověřte důležitost pivotizace. Vyřešte soustavu \[\begin{equation*} \begin{pmatrix} 10^{-20} & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} \end {equation*}\] nejprve přesně (na papíře), poté s využitím LU dekompozice s (částečnou) pivotizací (využijte nějakou knihovní funkci, např.
scipy.linalg.lu()
), a nakonec pomocí LU dekompozice bez pivotizace (to si budete muset sami naprogramovat). Porovnejte výsledky $\vect {x}$ z jednotlivých metod a výsledky zpětného vynásobení matic $L^{-1}\cdot U$ (resp. $P\cdot L^{-1}\cdot U$ v případě s pivotizací). - Mějme nekonečný deskový kondenzátor se vzdáleností desek $L=10 \mathrm{cm}$ a napětím mezi deskami $U=5 \mathrm{V}$. Do kondenzátoru vložíme uzemněnou elektrodu ve tvaru nekonečně dlouhého hranolu s čtvercovou podstavou o hraně $a=2 \mathrm{cm}$, jejíž střed leží $l=6{,}5 \mathrm{cm}$ od uzemněné desky původního kondenzátoru (tak, že leží mezi deskami). Hranol je orientován tak, že jedna z jeho kratších hran je kolmá k deskám kondenzátoru. Nalezněte průběh elektrického potenciálu v kondenzátoru. Protože je problém symetrický vůči posunu v ose rovnoběžné s nekonečnou hranou hranolu, stačí jej řešit v řezu kolmém k této ose, jde tedy o 2D problém. V této rovině pak získaný průběh potenciálu také vykreslete. K řešení můžete využít program přiložený k zadání.
Bonus: Vypočtěte a vykreslete také průběh velikosti intenzity el. pole $\vect {E}$.
Mirek a Lukáš naplňují matice attoliškami.
(9 bodů)5. Série 31. Ročníku - P. plovoucí rtuť
Vymyslete co nejvíce fyzikálních „fíglů“, díky kterým by rtuť, alespoň po omezenou dobu, plavala na kapalné vodě. Čím trvalejší řešení naleznete, tím lépe.
Karel chtěl otočit Archiméda na ruby.
(10 bodů)5. Série 31. Ročníku - S. rostou nám diferenciální rovnice
- Řešte problém dvou těles pomocí Verletovy a Rungovy-Kuttovy metody 4. řádu přes několik (mnoho) period. Krok přitom volte tak velký, aby se projevily numerické chyby, a pozorujte, jakým způsobem se chyby v obou případech projevují na tvaru trajektorie.
- Řešte pohyb tlumeného lineárního harmonického oscilátoru daného rovnicí $\ddot {x}+2\delta \omega \dot {x}+\omega ^2 x=0$, kde $\omega $ je úhlová frekvence a $\delta $ tlumící člen. Parametry měňte a sledujte změny v chování oscilátoru. Pro jaké hodnoty parametrů se oscilátor utlumí nejrychleji?
- Modelujte růst povrchu metodou balistické depozice a studujte statistické chování hrubosti povrchu. Nalezněte mocniny $\alpha $ a $\beta $ popisující růst před saturací a po saturaci (viz seriál). Vyjděte z kódu v seriálu. Volte takový počet kroků, abyste byli schopni dobře studovat oba režimy hrubnutí. Lineární rozměr povrchu volte alespoň $L = 256$. (Upozornění: simulace mohou trvat i několik hodin.)
- Simulujte na čtvercové mřížce šíření zhoubného nádoru pomocí Edenova modelu. Uvažujte přitom následující obměnu: s pravděpodobností $p_1$ dojde k nákaze zdravé buňky v kontaktu s nádorovou a s pravděpodobností $p_2$ dojde k uzdravení nakažené. Volte nejprve $p_1 \gg p_2$, pak $p_1 > p_2$ a nakonec $p_1 < p_2$. Na počátku nechť je nakaženo pět buněk do tvaru kříže. Kvalitativně popište, co pozorujete.
- Přepište kód ze seriálu pro růst fraktálního krystalu (DLA model) na hexagonální mřížce na růst na čtvercové mřížce a spočtěte dimenzi výsledného fraktálu.
Poznámka: Využít kódy přiložené k seriálu není nutné, ale doporučené.
Algebru už Mirek s Lukášem vypěstovali, nyní mají jiné osivo.