Vyhledávání úloh

astrofyzika (19)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (15)gravitační pole (12)hydromechanika (19)jaderná fyzika (5)kmitání (14)magnetické pole (6)matematika (31)mechanika hmotného bodu (68)mechanika plynů (20)mechanika tuhého tělesa (30)molekulová fyzika (11)geometrická optika (16)vlnová optika (6)ostatní (20)relativistická fyzika (8)statistická fyzika (11)termodynamika (28)vlnění (13)

(9 bodů)4. Série 31. Ročníku - P. Voyager II a Voyager I žijí!

Máme nějaký satelit, který chceme vypustit ven ze Sluneční soustavy. Vypouštíme ho z oběžné dráhy Země tak, že po nějakých korekcích dráhy získá rychlost, která je vyšší než úniková rychlost ze Sluneční soustavy. Jaká je pravděpodobnost, že dojde ke kolizi sondy s nějakým kosmickým materiálem s průměrem větším než $d = 1 \mathrm{m}$ před opuštěním Sluneční soustavy?

(3 body)2. Série 31. Ročníku - 2. irradiace solární elektrárny

Solární konstanta, či správněji solární irradiace, je tok energie přicházející ze Slunce ve vzdálenosti Země od Slunce. Nejde o konstantu, ale uvažujme, že má hodnotu $P = 1\,370\,\mathrm{W\cdot m^{-2}}$. Uvažujme, že Země obíhá Slunce po kružnici a sklon zemské osy vůči kolmici k její oběžné rovině je $23{,}5\mathrm{\dg}$. Jaký bude maximální výkon zachycený solárním panelem o ploše $S= 1\,\mathrm{m^2}$ o letním a zimním slunovratu, pokud panel leží na rovném povrchu Země v Praze? Uvažujte, že ani atmosféra ani budovy nijak neovlivní měření.

Karel si pustil Crash Course Astronomy.

(6 bodů)2. Série 31. Ročníku - 3. pozorovací

Jakou část povrchu kulové planety není možné vidět ze stacionární oběžné dráhy planety (taková dráha, že se obíhající objekt nachází stále nad stejným bodem na planetě), která má hustotu $\rho $ a periodu rotace $T$?

Filip prechádzal nevidené úlohy z náboja.

(6 bodů)2. Série 31. Ročníku - 4. jaderný odpad nikdy více

Představme si, že máme něco (například jaderný odpad) a chceme se toho zbavit. Těleso dostaneme na oběžnou dráhu Slunce shodnou s oběžnou dráhou Země, ale dostatečně daleko od Země, abychom mohli gravitační působení Země nadále zanedbávat. Otázka je, jaký způsob zbavení se inkriminovaného předmětu by nás stál kolik energie a který postup by byl tedy nejvýhodnější. Varianty jsou

  • Hodit to do Slunce. Stačí, aby se to dostalo na sluneční povrch a bude to dostatečně usmažené.
  • Převést to na kruhovou dráhu v Hlavním pásu (pás planetek mezi Marsem a Jupiterem).
  • Vyhodit to zcela ze Sluneční soustavy.

Karel přemýšlel nad tím, co je vlastně SEO a narazil na úlohu.

(7 bodů)1. Série 31. Ročníku - 5. planetární osidlování

Nejspíše jste již někdy přemýšleli o tom, jestli neexistují nějaké mimozemské civilizace. Zpravidla čím větší hvězda je, tím větší má zářivý výkon a tím kratší má také svůj život. Zaměřme se nyní na to, že máme dvě hvězdy, z nichž jedna má dvojnásobný zářivý výkon co druhá. Pokud je pásmo, ve kterém je možný život, dáno teplotou, na které by se ustálilo dokonale černé těleso, a určitými dvěma teplotami (stejné pro jakoukoliv soustavu), kolem které hvězdy je širší pásmo, ve kterém by mohla být planeta se životem? Kolikrát bude větší oproti druhé hvězdě?

Karel často prokrastinuje na Youtube.

1. Série 22. Ročníku - P. Mikuláš vs. Klaudios

figure

Představa geocentrického systému

Rok 2009 je vyhlášen jako Mezinárodní rok astronomie a připomíná 400 let používání dalekohledů lidstvem. Vraťme se o čtyři staletí zpět, kdy byl dalekohled již k dispozici, ale klasická fyzika ještě v plenkách. V otázce uspořádání světa spolu soupeřily Koperníkův heliocentrický názor a Ptolemaiův geocentrický systém. Navrhněte experiment, resp. pozorování, které mezi oběma představami dokáže rozhodnout. Dostatečně okomentujte, jaký výsledek lze očekávat a co z něj plyne v prospěch či neprospěch uvažovaných uspořádání. Vlastní pozorování není nutné, i když vhodné. Navíc vysvětlete, proč jsou v geocentrickém modelu Slunce a Země spojeny úsečkou?

Významný důkaz chtěl připomenout Pavel Brom.

3. Série 10. Ročníku - S. Venuše

Spočtěte ekliptikální a rovníkové souřadnice Venuše pro 24. 8. 1988 v $0^{h}UT$ (světový čas). Pro tento den určete vzdálenost Venuše od Země a máte-li doma nějakou hvězdnou mapu, určete také souhvězdí, ve kterém se Venuše nachází. Elementy drah Venuše a Země jsou:

$a_{V}=0,72333\; \textrm{AU}$ $e_{V}=0,00679$ $i_{V}=3,3949^{o}$ $\Omega_{V}=76,7112^{o}$ $\omega_{V}=55,0804^{o}$
$a_{Z}=1,00000\; \textrm{AU}$ $e_{Z}=0,01673$ $i_{Z}=0,0014^{o}$ $\Omega_{Z}=352,2647^{o}$ $\omega_{Z}=110,6756^{o}$

Oběžná doba Země kolem Slunce je $T_{Z} = 365,2571\; \textrm{dne}$. Údaj o okamžiku průchodu planet periheliem je nahrazen zadáním středních anomálií Venuše $M_{0}^{V}$ a Země $M_{0}^{Z}$ pro 18. 7. 1988 v $0^{h} UT$:

$$M_{0}^{V}=186,0712^{o}$$ $$M_{0}^{Z}=193,2434^{o}$$

Při řešení nepoužívejte žádné vztahy vyčtené z knih o astronomii.

2. Série 10. Ročníku - S. oběžná dráha Země kolem Slunce

figure
figure

Určete pravou anomálii a vzdálenost Země od Slunce po $1/4$ oběžné doby Země kolem Slunce od průchodu Země periheliem. Velká poloosa je $a=1\;\mathrm{AU}$ a excentricita $e=0,0167$.

1. Série 10. Ročníku - S. hvězdná velikost

figure

Na procvičení pojmu hvězdné velikosti si vyřešte tyto úlohy:

  • Jaká je absolutní magnituda Slunce $M$, je-li jeho zdánlivá magnituda $m=-26,74$?
  • Složky dvojhvězdy Castor v souhvězdí Blíženců jsou v dalekohledu jasné $m_{A}=2,0$ a $m_{B}=2,9$. Neozbrojené lidské oko však tyto hvězdy nerozliší. Jak jasná se jeví tato dvojhvězda při pozorovaní pouhým okem?
  • V jaké poloze na své dráze se jeví Venuše ze Země nejjasnější? Předpokládejte, že Venuše obíhá kolem Slunce přibližně po kružnici s poloměrem $r=0,7233\;\mathrm{AU}$ a že jasnost v celé viditelné a osvětlené části povrchu Venuše je konstantní. U těch, co neumějí derivovat, se spokojíme s numerickou hodnotou vzdálenosti Venuše od Země; nakreslete si graf závislosti jasnosti Venuše na vzdálenosti a odečtete z něj polohu největší jasnosti.
  • Pokuste se odhadnout jasnost Venuše v poloze, kdy je na obloze od Slunce úhlově nejdál. Albedo Venuše (tj. poměr odražené ku dopadající intenzitě záření) je $0,76$ a její poloměr $R_{V}=6052\;\mathrm{km}$. Předpokládejte, že záření odražené od Venuše se rovnoměrně rozptýlí do celého poloprostoru a že jasnost každého světlého místa viditelného povrchu bude, jako by Slunce bylo právě nad ním.
  • Určete, v jaké největší a nejmenší výšce nad obzorem se v naší zeměpisné šířce nachazí Slunce během roku. Rovina ekliptiky s rovinou zemského rovníku svírá úhel $23,5$ stupňů.

6. Série 8. Ročníku - 1. Jupiter a kometa

figure

Trajektorie planety

Kometární rodina Jupiteru vzniká následujícím způsobem (viz. obrázek). Kometa přilétá k Jupiteru z velké vzdálenosti s téměř nulovou počáteční rychlostí. Po opuštění Jupiterova gravitačního pole (přesně sféry gravitačního vlivu Jupitera), má její rychlost (vzhledem ke Slunci) přesně opačný směr než rychlost Jupitera. Poté se pohybuje opět v gravitačním poli Slunce. V jaké vzdálenosti od něj se bude nacházet perihelium dráhy komety a jaká je její oběžná doba (jaká je velikost velké poloosy dráhy komety)? Uvažujte, že Jupiter obíhá kolem Slunce po kružnici o poloměru $R=5,2\;\mathrm{AU}$.

5. Série 8. Ročníku - 1. vesmírná katastrofa

Tři planetky o stejné hmotnosti $M=10^{26}\; \textrm{g}$ jsou umístěny ve vrcholech rovnostranného trojúhelníka o straně $l=100\; \textrm{Gm}$ [gigametry]. Nemajíce počáteční rychlosti nezbývá jim než padat vstříc jisté záhubě. Určete, za jak dlouho se srazí (rozměry planetek zanedbejte).

2. Série 8. Ročníku - 1. přistání kosmické sondy

figure

Graf závislosti

Přistávací modul kosmické lodi se přibližuje k povrchu planety s konstantní rychlostí, přičemž předává na kosmickou loď údaje o tlaku atmosféry. Graf závislosti tlaku na čase je na obrázku. Při přistání na povrchu planety modul naměřil teplotu $T=700\; \textrm{K}$ a tíhové zrychlení $g=10\;\mathrm{m}\cdot \mathrm{s}^{-2}$. Určete rychlost $v$, kterou modul přistává, když se atmosféra skládá z oxidu uhličitého. Určete teplotu $T_{h}$ ve výšce $h=12\;\mathrm{km}$ nad povrchem planety.

5. Série 7. Ročníku - P. Sluneční soustava

S nevelkou přesností pozorování (za Ptolemaia byla asi 0,5°) určil už Hipparchos vzdálenost Slunce a Měsíce, a to překvapivě dobře (59 zemských poloměrů, 134 600 000 km). Zkuste nalézt postup, jak to provedl, a odhadněte, jaká je asi chyba výsledku získaného s tehdejšími prostředky.

V šestnáctém století, stále ještě bez jakékoli optiky, se pozorovací metody značně zdokonalily (Tycho Brahe měřil s přesností na 2' ). Vymyslete, jak mohl středověký astronom určit poměry poloos drah planet vůči vzdálenosti Země od Slunce a jejich oběžné doby.

Na sféře stálic, mimo okruhy planet, se však stále jevilo nebe neměnné. Jak přesně by musel pozorovatel měřit polohy hvězd, aby zjistil jejich posuny vůči sobě, ať už skutečné nebo zdánlivé?

3. Série 7. Ročníku - P. Galileo Galilei

Usoudili jsme, že v poklidné vánoční době vás raději ušetříme přílišného počítání a naopak vyzkoušíme vaše schopnosti fyzikální argumentace bez pomoci vzorců. Za tímto účelem se tedy přenesme téměř o čtyři století zpět, do doby, kdy na univerzitě v Pise a později v Padově působil muž jménem Galileo Galilei. Nebude snad na škodu, když zde trochu přiblížíme jeho tehdejší práci a názory. Zdejší profesura ho neuspokojovala o nic více než předchozí studium, nevyhovoval mu jediný tehdy uznávaný výklad principů přírodních dějů pocházející od Aristotela. Sám se zabýval zkoumáním konkrétních vlastností hmoty, a to jak pevných těles (pevnost), tak kapalin a plynů (tlak, vakuum). Největší význam pro další rozvoj fyzikálního poznání mělo jeho studium jednoduchých mechanických systémů, kdy opustil pole statiky, zpracované již Archimedem, a pustil se do zkoumání jejich pohybových vlastností, čímž položil základy dynamiky (od něj pochází i naše pojetí pojmu setrvačnost a zrychlení). Ovšem nemenší význam měly jeho objevy učiněné na nebi, kterých dosáhl díky své vlastní zdokonalené verzi tzv. holandského dalekohledu. Počátkem 17. století je shrnul do díla nazvaného Hvězdný posel, které však bylo pro svůj kritický pohled z mnoha stran ostře napadáno. V roce 1616 pak musel sám pod pohrůžkou uvěznění upustit od svých „bludných názorů“, ve kterých se stále více blížil Koperníkovu modelu vesmírných pohybů. O osm let později, kdy nastoupil nový papež, se opět pustil do boje s nesmiřitelnou inkvizicí a vydal Dialog o obou největších soustavách světových, ve kterém obhajoval Kopernikovu představu proti všem možným argumentům opozičního tábora. Dílo podávalo daný problém tak dovedně, že po úpravách došlo i papežskému schválení.

Po vás chceme, aby jste se zamysleli se nad tím, jakých argumentů mohl při obhajobě heliocentrického názoru použíti. Uvažte dříve známé i nově objevené skutečnosti, kterými mohl Galileo svou pravdu potvrdit. Mějte na paměti, že jeho oponenty byli většinou lidé bez vědeckého vzdělání, jakož i že zakladatel matematického popisu fyzikální reality, Isaac Newton, se narodil až několik let po Galileově smrti.

3. Série 2. Ročníku - S. zeměměřiči podruhé

figure

  • Vraťme se opět do Severního království. V řešení příkladu I.S jste velkým zeměměřičům správně poradili převodní vzorce

$$x′=x\cos φ-yk\sin φ\; (1)$$ $$y′=kx\sin φ+y\cos φ\; (2)$$

kde $k$ je poměr metr ku severské míli a $φ$ úhel mezi magnetickým pólem a Severkou. Zeměřičům se však tento výsledek moc nelíbil, a to hned ze dvou důvodů – za prvé se v nich proti všem tradicím převádí severská míle na metr, s čímž se ale budou muset vyrovnat sami, ale hlavně za druhé neměří v Severním královstní odchylku mezi oběma používanými severními směry pomocí úhlu, ale pomocí tzv. odklonu $u$. Odklon osy $y′$ od osy $y$ je definován jako $u=x/y$, kde $x$ a $y$ jsou souřadnice bodu, který leží ve směru Severky, tj. osy $y$. Ukažte, že odklon $u$ nezávisí na tom, který bod na ose $y′$ v definici zvolíme, že odklon osy $y$ od $y′$ je $u$ a vyjádřete převodní vztahy (1) a (2) v závislosti na odklonu místo na úhlu.

  • Zeměměřiči při porovnání svých výsledků zjistili zajímavou věc. Většina údajů se vlivem používání odlišných severních směrů liší, ale jeden údaj, který získávají podle vzorce $Δx+(kΔy)$, resp. $Δx′+(kΔy′)$, vychází oběma zeměměřičům stejně. Je to náhoda? Pokud ne, tak to dokažte a odůvodněte proč.

1. Série 2. Ročníku - 2. Ptolemaios a Koperník

Vraťme se ke středověkému sporu. Roku 1543 ve svém díle De Revolutionibus orbium coelestium Mikuláš Koperník předkládá svůj heliocentrický výklad světa, kterým popírá zažitou geocentrickou představu zformulovanou nejjasněji Ptolemaiem v díle Megalé Syntaxis v 2. století n. l. Umožněme myšlenkově oběma astronomům setkání, na kterém by mohli obhajovat svůj názor.

Koperník: „V mém výkladu je Slunce nepohyblivé a kolem něj se pohybují všechny planety včetně Země po kruhových drahách, což je mnohem jednodušší než popis pohybu planet v geocentrické představě.“ (Eliptické dráhy přinesl až o 60 let později Kepler.)

Co na to Ptolemaios? Kdyby byl hodně chytrý, odpověděl by třeba toto: „Tvůj názor je odvážný, mladíku, (Koperník byl o 1400 let mladší), ale myslím, že nepřináší nic nového, jenom zmatek v ustálených představách. I kdyby podle Tebe Země obíhala kolem Slunce, když se postavíme na Zemi, což stále děláme, uvidíme, že Slunce se pohybuje relativně vůči Zemi a to po kružnici. Pohyb je relativní!“ (Vskutku, pokud se nám pohyb jednoho tělesa z druhého zdá kruhový, tak opačně z prvního se pohyb druhého bude zdát opět kruhový – ověřte si to.) „Zapomeňme třeba na ostatní planety a mějme jen Slunce a Zemi. Můžeš i pak tvrdit, že Země obíhá kolem Slunce a ne naopak?“

Koperník: „Ano, i pak. Slunce stojí vůči stálicím, vůči hvězdám, a Země ne.“

Ptolemaios: „A proč by se stálice také nemohly pohybovat kolem Země? Copak Země středem vesmíru není lákavá myšlenka?“

Vidíme, že pan Koperník se dostává do úzkých. Vždyť Ptolemaios argumentuje tak revolučními a přitažlivými myšlenkami, jako že pohyb je relativní. My bychom se však přiklonili spíš ke Koperníkovi. Máme proti němu ale výhodu – víme, s čím přišel o necelých 150 let později pan Newton. Přizvěme ho k debatě. Jakými slovy vyřeší spor obou astronomů a přesvědčí Ptolemaia, zatím ale neřekneme. Co byste na místě Newtona řekli vy?

1. Série 2. Ročníku - E. sluneční čas

Jak víme, celý povrch Země je rozdělen na 24 hlavních časových pásem po 15 stupních zeměpisné délky. Na celém území naší republiky se řídíme středoevropským časem příslušejícím 15. stupni východní délky, resp. letním časem posunutým o 1 hodinu. Dále lze zavést tzv. sluneční čas, jehož poledne (12 hodin) je v okamžiku, kdy je na dané zeměpisné délce slunce nejvýše. Navrhněte metodu měření a změřte rozdíl mezi letním středoevropským časem a slunečním časem ve vaší zeměpisné délce. Výsledek porovnejte s výpočtem.

1. Série 2. Ročníku - S. zeměměřiči

figure

Za devatero horami v Severním království pod vládou moudrého krále žijí dva národy – denní a noční lidé. Pro potřeby obou národů zde pracují dva velcí zeměměřiči. Denní zeměměřič měří vzdálenosti k východu od středu náměstí hlavního města v metrech (označme $x$) a vzdálenosti v severním směru, který je zde považován za posvátný, měří v severských mílích ($y$). Sever určuje podle magnetky kompasu. Noční zeměměřič určuje sever podle Polárky a vzdálenosti od středu náměstí k východu opět měří v metrech ($x′$) a k severu v severských mílích ($y′$). Jednoho dne chtěli porovnat své výsledky. Ocitli se však před velkým problémem. Vzhledem k tomu, že směr k Polárce není shodný se směrem k magnetickému pólu, tak se jejich údaje liší.

  • Pomozte jim a odvoďte vztahy mezi údaji $x$, $y$ a $x′$, $y′$.
  • Jak by vztahy mezi $x$, $y$ a $x′$, $y′$ vypadaly, kdyby oba zeměměřiči neměřili vzdálenosti ze stejného místa?

1. Série 1. Ročníku - 2. antiraketa

figure

Model nádoby

Uvažujme nádobu s otvorem dle obrázku. Uniká-li stlačený vzduch z nádoby ven, nádoba se pohybuje. Jde o princip analogický raketovým motorům. Představme si nyní opačnou situaci. Nádobu, v níž bylo vakuum, umístěnou ve vzduchu, který do nádoby proudí malým otvorem. Nádoba se bude pohybovat:

  • doleva
  • doprava
  • nebude se pohybovat
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz