Vyhledávání úloh

astrofyzika (19)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (15)gravitační pole (12)hydromechanika (19)jaderná fyzika (5)kmitání (14)magnetické pole (6)matematika (31)mechanika hmotného bodu (68)mechanika plynů (20)mechanika tuhého tělesa (30)molekulová fyzika (11)geometrická optika (16)vlnová optika (6)ostatní (20)relativistická fyzika (8)statistická fyzika (11)termodynamika (28)vlnění (13)

(9 bodů)4. Série 31. Ročníku - P. Voyager II a Voyager I žijí!

Máme nějaký satelit, který chceme vypustit ven ze Sluneční soustavy. Vypouštíme ho z oběžné dráhy Země tak, že po nějakých korekcích dráhy získá rychlost, která je vyšší než úniková rychlost ze Sluneční soustavy. Jaká je pravděpodobnost, že dojde ke kolizi sondy s nějakým kosmickým materiálem s průměrem větším než $d = 1 \mathrm{m}$ před opuštěním Sluneční soustavy?

(3 body)3. Série 31. Ročníku - 2. zrychleníčko, zrychlení

figure

Náčrt elipsy

Na obrázku vidíte náčrt elipsy s ohnisky $F_1$ a $F_2$ a několika vyznačenými body na ní. Uvažujte, že elipsa znázorňuje trajektorii nějakého hmotného bodu. Znázorněte do obrázku zrychlení, která působí na hmotný bod v jednotlivých vyznačených bodech dráhy pro dvě situace (jde o směry a vzájemné poměry zrychlení (které je větší/menší) v různých bodech v rámci jednoho náčrtu).

  1. V ohnisku $F_1$ je umístěno hmotné těleso, kolem kterého hmotný bod obíhá. Uvažujeme, že platí 2. Keplerův zákon.
  2. Těleso má konstantní velikost rychlosti, pouze se pohybuje po elipse.

1. Série 22. Ročníku - S. princip ekvivalence

* Jaké by musely nastat podmínky, aby Galileův pokus nevyšel? Šikmá věž v Pise je vysoká $h$ =55m$$, předpokládejte, že obě koule mají poloměr $R$ = 8 \;\mathrm{cm}$ a že jedna koule je vyrobena z olova o hustotě $ρ$ = 11300 kg\cdot m^{ − 3}$$. Jakou hustotu by musela mít druhá koule, aby rozdíl v časech dopadu obou koulí byl větší než $ΔT$ = 0.3 s$?$

  • S jakou přesností ověřuje původní Eötvösovo měření rovnosti poměru gravitační a setrvačné hmotnosti pro neutrony a protony, pokud ve dřevě tvoří neutrony 50 procent hmotnosti, zatímco v platině 60 procent hmotnosti? Zanedbejte hmotnost elektronů a vazebné energie.
  • Ověřte užívaný předpoklad o tom, že v Budapešti je $g_{s}$ v porovnání s $g$ zanedbatelné.

Zadali autoři seriálu Jakub Benda a Pavel Motloch.

1. Série 10. Ročníku - E. výše mého domova hvězd se bude dotýkat

První experimentální úloha letošního ročníku je svým zadaní poměrně jednoduchá, poskytuje však velký prostor pro vaši nápaditost a vynalézavost: Změřte výšku vašeho bydliště co nejvíce způsoby a výsledky porovnejte. Nebojte se odvážných nápadů, originalita řešení bude kladně hodnocena. Spočítejte také nebo alespoň odhadněte chyby měření nezapomínajíce na to, že ve fyzice platí: jedno pozorovaní = žádné pozorovaní!

4. Série 9. Ročníku - 3. stvoření hvězd

Podle jedné z teorií vznikají hvězdy z oblaku mezihvězdné látky (kosmického prachu) smršťováním pod vlivem gravitačních sil. Určete dobu, za jakou se může zformovat hvězda z obrovského kulového oblaku kosmického prachu o hustotě $ρ=2\cdot 10^{–17}\;\textrm{kg}\cdot \textrm{m}^{–3}$. Můžete předpokládat, že se během smršťování částečky hmoty nepředbíhají a na začátku smršťování měly nulové rychlosti (oblak nijak nerotoval, nebyly v něm víry apod.). Zanedbejte také rozměry vzniknuvší hvězdy vůči počáteční velikosti oblaku.

3. Série 9. Ročníku - E. gravitační zrychlení

Pokuste se změřit gravitační zrychlení co největším počtem metod. U každé metody proveďte 10–20 měření, porovnejte výsledky a přesnost různých metod.

Nápověda: Můžete využít matematického nebo fyzikálního kyvadla (těžký předmět na nehmotném závěsu). Při přímém měření, tedy zrychlení volného pádu, nepoužívejte lehké předměty (pírko), neházejte nic na hlavy chodců (špatně měřitelná výška). Ani vrhat své tělo vám nedoporučujeme (opakovatelnost pokusu). Při kutálení čehokoli po nakloněné rovině nezapomeňte uvážit, že těleso má i nějaký moment setrvačnosti. Lze použít i Adwoodův padostroj, rychlost výtoku kapaliny z nádoby nebo cokoliv jiného, co budete umět změřit.

4. Série 7. Ročníku - 1. vláček

Dlouhá vlaková souprava délky $l$ jede po dráze, která z vodorovného úseku přechází ve svah se sklonem $a$. V okamžiku, kdy se vlak zastavil, byla na svahu přesně polovina vagónů. Jaká byla doba, za kterou vyjely tyto vagóny na svah. Tření zanedbejte.

2. Série 7. Ročníku - 3. atmosféra

Odhadněte, jak vysoko může sahat atmosféra na planetě s danou hmotností $m$. Jaká nejvyšší hora může na takové planetě existovat? Porovnejte vaše výsledky s údaji z naší planetární soustavy.

1. Série 7. Ročníku - 1. neposedné válce

figure

Velké množství dutých válců se zmenšujícími se průřezy je vnořeno do sebe a zalito vodou tak, že válec s menší plochou dna vždy plave ve válci, do kterého je vsazen (viz obr. 1). Nejmenší válec má plochu dna rovnu $S_{0}$, a ta je mnohem menší než plocha dna vnějšího válce. Vzdálenosti mezi dny jednotlivých válců jsou dostatečně velké, aby nikdy nedošlo k dotyku. Do nejmenšího válce přilijeme objem vody $V_{0}$. Po dolití opět válce v sobě plovou. O jakou vzdálenost a jakým směrem se posune dno nejmenšího válce vzhledem k nehybné podložce?

3. Série 2. Ročníku - 3. síla přitažlivosti

Kdyby celý prostor byl prázdný mimo dvou kapek vody, budou se tyto kapky přitahovat podle Newtonova gravitačního zákona. Nyní předpokládejme, že celý prostor je vyplněný vodou s výjimkou dvou bublin (obrázek). Jak se bubliny budou pohybovat?

2. Série 2. Ročníku - 2. dvě kuličky

Uvažujme tělísko o hmotnosti $m$ nacházející se v klidu v gravitačním poli velmi těžké kuličky, jejíž velikost lze zanedbat, s hmotností $M\gg m$. Zkuste spočítat nebo odhadnout dobu, za kterou tělísko dopadne na kuličku, je-li mezi nimi na začátku vzdálenost $R$. Zkuste navrhnout fyzikální situaci odpovídající této sestavě.

1. Série 2. Ročníku - 2. Ptolemaios a Koperník

Vraťme se ke středověkému sporu. Roku 1543 ve svém díle De Revolutionibus orbium coelestium Mikuláš Koperník předkládá svůj heliocentrický výklad světa, kterým popírá zažitou geocentrickou představu zformulovanou nejjasněji Ptolemaiem v díle Megalé Syntaxis v 2. století n. l. Umožněme myšlenkově oběma astronomům setkání, na kterém by mohli obhajovat svůj názor.

Koperník: „V mém výkladu je Slunce nepohyblivé a kolem něj se pohybují všechny planety včetně Země po kruhových drahách, což je mnohem jednodušší než popis pohybu planet v geocentrické představě.“ (Eliptické dráhy přinesl až o 60 let později Kepler.)

Co na to Ptolemaios? Kdyby byl hodně chytrý, odpověděl by třeba toto: „Tvůj názor je odvážný, mladíku, (Koperník byl o 1400 let mladší), ale myslím, že nepřináší nic nového, jenom zmatek v ustálených představách. I kdyby podle Tebe Země obíhala kolem Slunce, když se postavíme na Zemi, což stále děláme, uvidíme, že Slunce se pohybuje relativně vůči Zemi a to po kružnici. Pohyb je relativní!“ (Vskutku, pokud se nám pohyb jednoho tělesa z druhého zdá kruhový, tak opačně z prvního se pohyb druhého bude zdát opět kruhový – ověřte si to.) „Zapomeňme třeba na ostatní planety a mějme jen Slunce a Zemi. Můžeš i pak tvrdit, že Země obíhá kolem Slunce a ne naopak?“

Koperník: „Ano, i pak. Slunce stojí vůči stálicím, vůči hvězdám, a Země ne.“

Ptolemaios: „A proč by se stálice také nemohly pohybovat kolem Země? Copak Země středem vesmíru není lákavá myšlenka?“

Vidíme, že pan Koperník se dostává do úzkých. Vždyť Ptolemaios argumentuje tak revolučními a přitažlivými myšlenkami, jako že pohyb je relativní. My bychom se však přiklonili spíš ke Koperníkovi. Máme proti němu ale výhodu – víme, s čím přišel o necelých 150 let později pan Newton. Přizvěme ho k debatě. Jakými slovy vyřeší spor obou astronomů a přesvědčí Ptolemaia, zatím ale neřekneme. Co byste na místě Newtona řekli vy?

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz