Vyhledávání úloh

astrofyzika (20)biofyzika (2)chemie (2)elektrické pole (8)elektrický proud (16)gravitační pole (13)hydromechanika (20)jaderná fyzika (5)kmitání (15)kvantová fyzika (1)magnetické pole (6)matematika (35)mechanika hmotného bodu (72)mechanika plynů (21)mechanika tuhého tělesa (31)molekulová fyzika (11)geometrická optika (17)vlnová optika (7)ostatní (25)relativistická fyzika (10)statistická fyzika (12)termodynamika (29)vlnění (13)

(7 bodů)5. Série 31. Ročníku - 4. tepelné ztráty

Na jaké teplotě se ustálí vnitřní prostředí bytu v panelovém domě? Uvažujte, že náš byt sousedí delšími stěnami, stropem a podlahou s dalšími byty, ve kterých je udržována teplota $22 \mathrm{\C }$. Kratšími stěnami sousedí s okolím, kde je teplota $-5 \mathrm{\C }$. Vnitřní rozměry bytu jsou – výška $h = 2{,}5 \mathrm{m}$, šířka $a = 6 \mathrm{m}$ a délka $b = 10 \mathrm{m}$. Součinitel měrné teplotní vodivosti stěn je $\lambda = 0{,}75 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$. Vnější stěny a stropy jsou tlusté $D\_{out} = 20 \mathrm{cm}$ a vnitřní $D\_{in} = 10 \mathrm{cm}$.

Jak se změní výsledek, pokud budovu zvenku zateplíme polystyrenem o tloušťce $d = 5 \mathrm{cm}$ s měrnou tepelnou vodivostí $\lambda ' = 0{,}04 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$?

Karel přemýšlel nad tím, jak to funguje v paneláku…

(3 body)4. Série 31. Ročníku - 1. zmrzlina

Odhadněte, kolik gramů zmrzliny dokážeme vyrobit, pokud máme k dispozici $5 \mathrm{l}$ kapalného dusíku o teplotě $-196 \mathrm{\C }$ a neomezené množství mléka a smetany o pokojové teplotě $22 \mathrm{\C }$? Předpokládejme, že požadovaná zmrzlina se skládá jen z mléka a smetany (hmotnostně půl na půl) a měla by mít teplotu $-5 \mathrm{\C }$. Protože se tepelné kapacity mléka a smetany v tomto intervalu teplot značně mění, počítejte s jejich průměrnými hodnotami $c\_m = 3{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro mléko a $c\_s = 4{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro smetanu. Zbylé potřebné údaje si dohledejte na internetu.

Michal dostal chuť na zmrzlinu.

(3 body)1. Série 31. Ročníku - 1. kávu si omléčním

Kdy je nejvhodnější nalít do horké kávy chladné mléko, abychom ji mohli pít co nejdříve? Nepožadujeme přesný výpočet, ale podrobný slovní popis toho, jak káva chladne a jak byste postupovali.

Terka S. se zarazila při výroku: Už jsem Ti do toho kafe dala mléko, aby Ti to rychleji vystydlo.

(7 bodů)1. Série 31. Ročníku - 4. praská mi v láhvi

Co když si skoro prázdnou 1,5 litrovou PET láhev uzavřeme v dobře vytápěné kanceláři, dejme tomu na $t\_k = 26 \mathrm{\C }$, a pak vyjdeme vstříc novým zážitkům dolů ze schodů? Láhev začne praskat. Co má větší vliv? To, že se mění atmosférický tlak, jak scházíme 10 pater v budově, nebo to, že je na schodech, dejme tomu, $t \_s = 15 \mathrm{\C }$?

Karel šel na Matfyzu v Troji ze schodů.

2. Série 22. Ročníku - P. milenecká

Jak se změní teplota pod peřinou, pokud jsou pod ní dva lidé místo jednoho?

vymyslel zmrzlý milovník Honza P.

1. Série 11. Ročníku - 4. grant strýčka Skrblíka

figure

Zlepsovak 1

figure

Strýček Skrblík se jednou doslechl o perpetuech mobile a vytušil příležitost, jak ještě více zbohatnout. Vypsal grant na vymýšlení „věčných strojů“, ale jediní, kdo se přihlásili, byli jeho synovci. Přinesli strýčkovi následující tři nápady:

  • Základem prvního perpetua je válec, který je dutý, vodotěsný a je upevněn v ose na valivých ložiscích. Obrázek. nám objasní funkčnost stroje. Na obě části válce sice působí tíhová síla $G$, ale část $B$ je vůči části $A$ válce nadlehčována vztlakovou silou $V$ dle Archimédova zákona. Válec se bude otáčet a jeho rotační energii převedeme na elektrickou energii.
  • Pokud zahřejeme kapalinu, zvětší svůj objem. Zároveň víme, že kapalina je nestlačitelná. Proto budeme kapalinu zahřívat a ochlazovat, změnu jejího objemu převedeme na mechanickou energii a tu na energii elektrickou. Část takto obdržené energie využijeme na zahřívání kapaliny (ochlazení kapaliny zajistí okolní prostředí, odborně „lázeň“). Zbytek energie roztočí stroje ve Skrblíkových továrnách.

* Do nádoby s vodou je zasunuta kapilára. Díky kapilárním jevům voda naplní celou kapiláru a z horního zahnutého konce odkapává dolů, jak je to vidět na obrázku. Dole je umístěna vodní turbína, která je roztáčena padající vodou, a tak může konat práci.

Strýček se nadšeně pustil do výroby těchto strojů, jaké však bylo jeho zklamání, když zjistil, že ani jediný z nich nefunguje. Od té doby už o žádných „perpetech“ nechce ani slyšet.

Na vás teď je, drazí řešitelé, abyste se pokusili vysvětlit, proč žádný z nápadů synovců strýčka Skrblíka nemůže fungovat jako perpetuum mobile.

1. Série 11. Ročníku - P. je narušen druhý termodynamický princip?

figure

Mějme aparaturu, jejíž schéma je na obrázku. Molekuly opouštějící nádobu s plynem $A$ (teplota $T_{A}$, střední kvadratická rychlost molekul $v_{A})$ tvoří molekulární svazek, jež dále prochází rychlostním filtrem $F$. Pouze částice s rychlostí $v_{F}$ proletí až do nádoby $B$. V prostoru mezi deskami filtru je vakuum, střední volná dráha molekul je větší než rozměr aparatury. Při vhodné volbě rychlosti $v_{F}$ ($v_{F}$ > $v_{A})$ bude teplota nádoby $B$ vyšší než nádoby $A$. Tudíž teplo z tělesa chladnějšího ($A)$ bude přecházet na těleso teplejší ($B)$, což je ve sporu s druhým principem termodynamiky. Vaším úkolem je vysvětlit (ne)správnost této úvahy.

6. Série 9. Ročníku - 1. gejzír na betoně

Jednoho krásného dne se studentíci na jednom nejmenovaném gymnáziu nudili, a tak si vymysleli zábavu. Do igelitového pytlíku nabrali vodu a vyhodili jej z okna. Na betonovém chodníku to udělalo krásný gejzír. Ale co čert nechtěl – zrovna přišel do třídy profesor fyziky a zeptal se jich: „Z jaké výšky byste museli vyhodit ten pytlík z okna, aby vám ta voda přešla do varu?“ No, a my se vás ptáme na totéž. Můžete zanedbat odpor vzduchu, popřípadě zauvažovat, co by se stalo, kdyby tam odpor vzduchu byl.

6. Série 9. Ročníku - 3. kap, kap

Jistě se vám už někdy stalo, že jste při vaření ukápli na mírně horkou plotýnku či pánev kapku vody. Potom jste si mohli kromě nepříjemného sykotu všimnout, že chvilku kapka poskakuje po plotýnce, a pak velice rychle zmizí. Jak to, že se menší kapka vypařuje rychleji než kapka větší?

5. Série 9. Ročníku - 4. baron Prášil

Na ledovou plochu rybníka o teplotě $0\;^\circ\textrm{C}$ dopadne rozehřátá dělová koule o poloměru $R$, měrné tepelné kapacitě $c_{k}$ a teplotě $100\;^\circ\textrm{C}$. Jak hluboko se koule ponoří do ledu, jestliže měrná tepelná kapacita ledu je $c_{l}?$ Předpokládáme, že se veškeré teplo využije na tavení ledu.

5. Série 9. Ročníku - S. teplotní vodivost

Ve vztahu pro tepelnou vodivost $q=Q/(S\textrm{d}t)=-\lambda(\textrm{d}T/\textrm{d}x)$ u tyče spádu teploty $\textrm{d}T/\textrm{d}x$ a průřezu $S$ a se pokuste najít vyjádření pro konstantu $\lambda$, pokud tyčí projde za čas $\textrm{d}t$ teplo $Q$.

Nápověda: střední energii jedné molekuly lze vyjádřit jako $u=m_{0}c_{v}T$.

4. Série 9. Ročníku - S. srážející se molekuly

Při odvození rovnice plynu jsme neuvažovali nárazy molekul na sebe navzájem. Pokuste se říci, ve kterém bodě našich úvah je třeba tento problém diskutovat a diskutujte ho.

Nápověda: Při diskusi použijte pojem střední volné dráhy molekuly.

3. Série 9. Ročníku - 4. lednička

V místnosti stojí otevřená lednička zapojená do zásuvky a mrazí. Po jedné hodině provozu necháme teplotu v místnosti ustálit. Jak se tato teplota liší od počáteční teploty v místnosti, pokládáme-li místnost za tepelně izolovanou?

2. Série 9. Ročníku - E. odpolední čajíček

Pokuste se změřit odpor spirály elektrického vařiče.

Návod: Ohřívejte vodu vařičem a sledujte závislost její teploty na čase. Z této závislosti zjistěte výkon vařiče, ze kterého už snadno naleznete odpor spirály. Zřejmě vám už došlo, že tato úloha je takzvaně experimentální.

2. Série 9. Ročníku - P. Lomonosův průvan

figure

Velký přírodovědec M. V. Lomonosov studoval ve své světově proslulé práci „O volném pohybu vzduchu v dolech“ závislost směru proudění vzduchu na ročním období. Po dlouhém a strastiplném bádání dospěl k závěru, že teplota vzduchu je v dole stále stejná po celý rok. (V jeho době byly doly ještě poměrně mělké.) Určete, jakými směry bude vzduch proudit v létě a v zimě v dolech umístěných podle obr. 4.

2. Série 9. Ročníku - S. Mayerův vztah

Jde o úlohu jednoduchou, ale pokud ji budete chtít řešit, radši si ještě jednou přečtěte text seriálu (i když vás možná trochu nudí) a pokud příklad zdárně vyřešíte, určitě pochopíte, o co v tomto díle seriálu šlo. Tedy:

Odvoďte, jak vypadá 1. věta termodynamická pro izochorický děj ($V=\;\mathrm{konst})$ a určete tím, co znamená výraz $c_{v}=1/n\cdot dU/dT$.

Výsledek po dosazení do jedné z výše uvedených rovnic (snadno naleznete které), nazýváme Mayerovým vztahem.

1. Série 9. Ročníku - 4. tlak plynu

V nádobě, jejíž stěny mají teplotu $t_{c}$, se nachází plyn o teplotě $t$. V kterém případě bude tlak na stěny nádoby větší: $t>t_{c}$ nebo $t<t_{c}?$

5. Série 8. Ročníku - E. chladnutí kapalin

Ve fyzice se často zkoumají tzv. relaxační procesy, tj. postupné ustálení určité fyzikální veličiny na nějaké hodnotě. V termodynamice pod pojmem relaxační doba máme na mysli čas, za který nastane mezi sledovaným systémem a jeho okolím (s nějakou přesností, danou chybou měření nebo fluktuacemi) termodynamická rovnováha. Relaxační doba se samozřejmě mění od procesu, který sledujeme – při vyrovnání tlaků je to asi $10^{-16}\; \textrm{s}$, při různých chemických dějích až měsíce či roky.

Vaším úkolem bude sledovat rychlost chladnutí dvou či více kapalin (např. voda a olej) za stejných okolních podmínek. Aby se vaše práce více podobala skutečnému fyzikálnímu experimentu, proložte naměřenými hodnotami funkci $f(t)=Ae^{-Bt}+T_{0}$ a zkuste interpretovat vypočtené konstanty nebo alespoň odhadněte, na čem by mohly záviset. Pro ty, kdo neví, co je to lineární regrese, je určen krátký odstavec o této metodě.

4. Série 8. Ročníku - 2. jak asi táhne komín

Vertikální roura výšky $h=1\;\mathrm{m}$ s plochou podstavy $S=50\;\mathrm{cm}^{2}$ je z obou stran otevřená. V dolní části roury se nachází ohřívač o výkonu $N=100\; \textrm{W}$. Jaká bude rychlost proudění vzduchu v troubě? Lze předpokládat, že veškerý tepelný výkon ohřívače se spotřebuje na ohřátí vzduchu. Atmosférický tlak je $p_{0}=100\; \textrm{kPa}$, teplota okolního vzduchu $t=20\;\mathrm{°C}$. Molární tepelná kapacita vzduchu při konstantním objemu je $C_{V}=2,5\; \textrm{R}$, kde $R$ je plynová konstanta.

3. Série 8. Ročníku - 3. polytropa na zahřátí

Pod pojmem polytropický rozumíme v termodynamice proces charakterizovaný rovnicí $pV^{α}=\;\mathrm{konst.}$, kde $α$ je daný parametr. Pro vhodné $α$ dostáváme např. izobarický ($α=0$), izotermický ($α=1$) nebo izochorický ($α=∞$) děj. Mějme nejjednodušší případ ideálního jednoatomového plynu. Při jakém polytropickém ději (t.j. pro jakou hodnotu $α$) se v něm zachovává

  • počet srážek atomů v jednotce objemu
  • celkový počet srážek?

2. Série 8. Ročníku - 3. nehoda ve vakuu

Dva kosmonauti se nacházejí v otevřeném mezihvězdném prostoru. Neočekávaně dojde k přetržení přívodní hadice u jednoho z nich a následně úniku veškerého vzduchu ze skafandru. Jeho přítel duchaplně připojí ventil ze svého skafandru na utržený konec hadice. Jenže ouha! Hadice je ucpaná a ke zprůchodnění trubice je třeba přetlaku alespoň $1,1\; \textrm{atm}$. Přitom standardní tlak udržovaný přístroji ve skafandru je roven $1\; \textrm{atm}$. Rozhodnou se k následujícímu kroku: vypnou přívod vzduchu nepoškozeného skafandru a společně se vystaví velmi intenzivnímu záření blízké hvězdy, čímž se jejich teplota zvýší z původních $27^{\circ}\;\textrm{C}$ na $107^{\circ}\;\textrm{C}$. Po vyrovnání tlaku rozpojí hadice a rychle se vrátí do stínu solárního článku, kde jejich teplota klesne k normálu. Jakého tlaku dosáhnou touto operací v poškozeném skafandru?

Poznámka: Komu se zdá tato příhoda příliš fantastická nebo málo vědecká, může stejnou úlohu počítat pro dvě identické nádoby spojené hadicí s jednosměrně propustnou klapkou.

6. Série 7. Ročníku - 1. kombinézy

V Arktidě se potkali dva polárníci, vybaveni různými druhy kombinéz. Při bližším seznamování se ukázalo, že teplota na povrchu kombinézy prvního polárníka je vyšší než u jeho kolegy. Která z kombinéz je teplejší, tj. má lepší izolační vlastnosti?

2. Série 7. Ročníku - E. vzdušná kapacita

Pomocí elektrického vysoušeče vlasů (zkráceně f.é.n.) změřte měrnou tepelnou kapacitu vzduchu.

Poznámka: Dbejte všech bezpečnostních zásad při práci s elektrickými zařízeními, viz ing. František Soukup: Elektřina nepromíjí, Práce – nakladatelství ROH, Praha 1955 (zejm. str. 19–21, 107 a celá kapitola Amatérství-fušérství).

2. Série 2. Ročníku - 4. výška sloupce vzduchu

figure

Barometrická stupnice

V barometrické trubici je sloupec vzduchu. Při teplotě $t_{0}=10^{\circ}\;\mathrm{C}$ je výška sloupce $l_{0}=10\;\mathrm{cm}$. Jaká bude jeho výška při teplotě $t=30^{\circ}\;\mathrm{C}$?

1. Série 2. Ročníku - 4. sloupy ze zlata

Mějme vedle sebe dva zlaté sloupy délky $200\; \textrm{m}$ a průřezu $1\; \textrm{dm}$, jeden z nich je zavěšený a druhý stojí na podložce a oba mají stejnou teplotu $0^{\circ}\; \textrm{C}$. Oběma dodáme stejné teplo $5 \cdot 10^{6}\; \textrm{kJ}$. Budou mít potom stejnou teplotu? Jestliže ne, odhadněte, o kolik se bude lišit. Potřebné údaje si vyhledejte. Tepelné ztráty do okolí zanedbejte.

4. Série 1. Ročníku - 2. lednička

V místnosti stojí otevřená lednička zapojená do zásuvky a mrazí. Po jedné hodině provozu necháme teplotu v místnosti ustálit. Jak se takto teplota liší od počáteční teploty v místnosti? Místnost pokládejte za tepelně izolovanou.

4. Série 1. Ročníku - 4. netradiční ohřívání čaje

Kolik nábojů je zapotřebí k uvaření šálku čaje? K dispozici máte ocelovou polní konvičku o hmotnosti $4\; \textrm{kg}$ a samopal. Náboje mají hmotnost $16\; \textrm{g}$ a rychlost $700\; \textrm{m}\cdot \textrm{s}^{ -1}$.

1. Série 1. Ročníku - 1. tři bazény

figure

Tři nádoby

Mějme tři bazény. V každém z nich plave kus ledu tak, jak ukazují obrázky. Hladina vody sahá vždy přesně po okraj bazénu. Led v bazénu na obr. 1 obsahuje vzduchovou bublinu. V bazénu 2 plave led s dutinou vyplněnou nezmrzlou vodou. Led v bazénu 3 obsahuje kousek železa. Určete, ve kterých bazénech voda po roztání ledu:

  • přeteče
  • poklesne
  • zůstane těsně po okraj

1. Série 1. Ročníku - P. píst

V nádobě uzavřené pohyblivým pístem je ideální plyn. Píst stlačíme z jeho rovnovážné polohy o malou vzdálenost $x$ ($x$ je mnohem menší než výška nádoby $h)$ a pak jej pustíme. Následný děj považujeme za izotermický.

  • Ukažte, že píst bude vykonávat harmonické kmity kolem rovnovážné polohy a najděte jejich frekvenci. (Návod: Uvažte síly působící na píst a jejich analogii se silami působícími na hmotný bod zavěšený na pružině.)
  • Diskutujte oprávněnost předpokladu o izotermičnosti uvažovaného děje.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz