FYKOS

Výběr série

Zadání úloh 3. série

Termín odeslání poštou: 9. ledna 2017
Termín uploadu: 10.1.2017 23:59:59
Facebook icon

Úloha III . 1 … dlouhý film (3 body)

Stahujete si svůj oblíbený film o velikosti 12 GB rychlostí 10 MB ⁄ s. Uvažujte, že signál se po kroucené dvojlince pohybuje rychlostí světla a modulace rozprostírá přenosovou rychlost rovnoměrně, tzn. byla-li by 1 b ⁄ s, musíme přijmout signál za celou sekundu k obdržení 1 bitu informace. Jak dlouhý úsek kabelu dokáže film zaplnit svými daty, pokud se bude šířit dostatečně dlouhým kabelem?

Facebook icon

Úloha III . 2 … pekelná (3 body)

Do pekla vede cesta a silnice po opačných březích řeky. Jdeme po směru řeky, který je vyznačen na obrázku. Břehy řeky jsou tvořeny částmi soustředných kružnic. Pěší cesta kopíruje jeden břeh řeky, silnice druhý břeh, šířka toku je neměnná. Po jaké straně řeky je rychlejší jít? Známe středový úhel každého kružnicového oblouku φ12, … a poloměr každé kružnice ra1,rb1,ra2,rb2, …, kde indexy a, b značí levý a pravý břeh.

Facebook icon

Úloha III . 3 … kde to píská (7 bodů)

Verčiny uši lze aproximovat dvěma bodovými detektory ve vzdálenosti d, které detekují zvukové vlny ze všech směrů stejně dobře. Verča umí polohu známého zdroje zvuku poslepu určit velice přesně, proto jednoho dne, když se probudila, vyzvala své přátele k tomu, aby ji vyzkoušeli. Jenže Verča si v jednom uchu zapomněla špunt, který snižuje intenzitu zvuku v jejím levém uchu k-krát. Verči byly zavázány oči a zdroj byl umístěn do vzdálenosti y před ni a o x napravo (či  − x nalevo). Určete, na které místo  ( x′,y′ )  Verča ukáže, jestliže uši rozeznávají polohu zdroje podle hlasitosti zvuku.

Facebook icon

Úloha III . 4 … radar zadarmo (7 bodů)

Na všechny patníky podél silnice umístěme kontrolní červené tabulky (vlnová délka červené barvy je λč = 630 nm). Jakmile řidič vidí na patníku před ním tabulku modrou (vlnová délka modré barvy je λm = 450 nm), ví, že jede příliš rychle. Jaká je tato mezní rychlost? Jakou má běžné osobní auto při této rychlosti hybnost a kinetickou energii?

Facebook icon

Úloha III . 5 … kladkovaná (7 bodů)

Mějme rozestavení kladek jako na obrázku. Známe hmotnosti mi, poloměry Ri a momenty setrvačnosti Ji všech kladek, hmotnost m závaží a hmotnost M, poloměr R i moment setrvačnosti J válce. Zanedbejte tíhu kladky 2, abyste mohli uvažovat, že lana vedoucí ke kladce 2 jsou rovnoběžná s nakloněnou rovinou. Součinitel smykového i klidového tření mezi válcem a podložkou je f. Lano na kladkách neprokluzuje. Vypočtěte s jakým zrychlením (popř. i úhlovým zrychlením) se bude pohybovat závaží m a válec M.

Facebook icon

Úloha III . P … srdeční (8 bodů)

Odhadněte, jakou práci vykoná lidské srdce na pumpování krve za jeden den. S čím se dá tato energie srovnat? Jaké procento z doporučeného denního příjmu energie tvoří váš odhad?

Facebook icon

Úloha III . E … reflexní náramek (12 bodů)

Změřte co nejvíce charakteristik samonavíjecího reflexního náramku. Zajímá nás především:

  • Náramek je vyztužen kusem plechu, který může být ohnut podélně (svinutý náramek) nebo příčně (narovnaný náramek). Jaký poloměr křivosti mají tyto ohyby, pokud na plech nepůsobí vnější síla?
  • Pokud náramek narovnáme a budeme ohýbat v jednom místě, při jakém úhlu přejde do ohnutého stavu? Při jakém úhlu se opět narovná? (Pozorujeme hysterezi?)
  • Jaký moment síly je potřebný k ohnutí náramku?
  • Je některý ze stavů náramku (svinutý nebo narovnaný) energeticky výhodnější? Odhadněte o kolik.

Facebook icon

Úloha III . S … limitní (10 bodů)

  1. Zkuste vlastními slovy popsat postup konstrukce intervalových odhadů střední hodnoty v případě obecného rozdělení měřených dat (postačí vlastními slovy popsat následující: centrální limitní věta a předpoklady jejího použití, kovariance a korelace (a jejich odhady), vícerozměrná centrální limitní věta a předpoklady jejího použití, zákon šíření nejistot a kdy ho lze použít). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  2. V přiloženém datovém souboru mereni3-1.csv najdete výsledky měření určité fyzikální veličiny v. Předpokládejme, že si nemůžeme být jisti, zda mají měřená data normální rozdělení. Vyjádřete nejistotu měření této fyzikální veličiny (nejistotu typu B neuvažujte), zkonstruujte intervalový odhady na základě CLV a stručně interpretujte jeho význam. Jak by se změnily výsledky a interpretace, pokud bychom měli k dispozici jen čtvrtinu měření (řekněme první čtvrtinu dat z datového souboru)?
  3. Předpokládejme, že naším cílem je naměřit fyzikální veličiny xy, které budeme chtít využít pro dosazení do vzorce

    Předpokládejme, že díky znalosti způsobu měření jsme si jisti, že jsou všechna měření na sobě nezávislá a ze zpracování naměřených dat měření máme následující výsledky, které jsou založeny na velkém počtu měření (více než 30 měření každé fyzikální veličiny)

    Určete odhad fyzikální veličiny v a nejistotu měření fyzikální veličiny v.

    Nápověda:   Mohly by se vám hodit následující vztahy:


  4. Pomocí simulace ve výpočetním prostředí R demonstrujte platnost centrální limitní věty. Tj. generujte n-tice nezávislých realizací náhodné veličiny, která nemá normální rozdělení (pro tento případ použijte exponenciální, rovnoměrné a Poissonovo rozdělení s libovolně zvolenými parametry) a na histogramu ukažte, že pokud na data provedeme následující transformaci

    takto transformovaná data už budou rozdělena přibližně podle normálního rozdělení N(01). (Součástí hodnocení bude i hodnocení vzhledu grafů – zejména vhodně zvolené popisky os a legenda.)

Bonus:   Předpokládejme, že naším cílem je naměřit fyzikální veličiny xy, které budeme chtít dosadit do vzorce


Uvažujme nejobecnější model měření (tj. měřená data nemají normální rozdělení a měření různých fyzikálních veličin na sobě mohou být závislá). V datovém souboru mereni3-2.csv máme výsledky měření fyzikálních veličin xy, určete nejistotu určení veličiny v a zkonstruujte pro ni intervalový odhad.

skript v kódování UTF-8
skript v kódování CP-1250
mereni3-1.csv
mereni3-2.csv

©FYKOS – webmaster@fykos.cz