Vyhledávání úloh

astrofyzika (6)biofyzika (1)chemie (1)gravitační pole (1)hydromechanika (3)kmitání (4)matematika (8)mechanika hmotného bodu (6)mechanika plynů (3)mechanika tuhého tělesa (2)molekulová fyzika (1)geometrická optika (5)ostatní (6)relativistická fyzika (1)statistická fyzika (7)termodynamika (5)vlnění (4)

(7 bodů)2. Série 31. Ročníku - 5. skleněný déšť

Dělník si na stavbu mrakodrapu přinesl vak se skleněnkami, aby se s nimi mohl pochlubit svým kolegům. A co se nestane – vak se vysype a kuličky padají skrze lešení směrem k zemi. Lešení se skládá z jednotlivých poschodí o výšce $h$. Podlaha každého poschodí se skládá ze stejných mříží, ve kterých díry zaujímají $k  \%$ z celkové plochy mříže. Uvažujme zjednodušený model propadávání kuliček lešením, kdy, pokud kulička spadne na díru v lešení, tak projde bez ovlivnění, a pokud spadne na pevnou část mříže, tak se její rychlost sníží na $0$ a ihned začne dále padat (tj. velikost kuliček je zanedbatelná vůči velikosti děr v lešení, kuličky se od lešení nijak neodráží a po dopadu na pevnou část mříže se ihned skutálí do díry a dále začínají padat). Nakonec neuvažujme ani potenciální srážky kuliček mezi sebou. Předpokládejte, že kuličky se z tašky sypou s konstantním hmotnostním průtokem $Q$. Jakou silou budou kuličky působit na každé patro lešení, až se situace ustálí?

(10 bodů)2. Série 31. Ročníku - P. ó Oganesson

Jaké vlastnosti má 118. prvek periodické soustavy prvků? Respektive jaké by asi měl, kdyby byl stabilní? Diskutujte alespoň tři fyzikální vlastnosti.

(10 bodů)2. Série 31. Ročníku - S. derivace a Monte Carlo integrace

 

  1. Vykreslete závislost chyby na velikosti kroku pro metodu odvozenou pomocí Richardsonovy extrapolace v textu seriálu. Jaký je optimální krok a minimální chyba? Porovnejte s centrovanou a dopřednou diferencí. Jako derivovanou funkci použijte $\exp(\sin(x))$ v bodě $x=1$.
    Bonus: Vypočtěte pro tuto metodu teoretickou velikost optimálního kroku pomocí odhadu chyb.
  2. Na webu se nachází soubor s experimentálně zjištěnými $t$, $x$ a $y$ souřadnicemi poloh hmotného bodu. Pomocí numerické derivace nalezněte časovou závislost složek rychlosti a zrychlení a vyneste obě závislosti do grafu. Jaký fyzikální děj bod nejspíše konal? Numerickou metodu si zvolte sami, svoji volbu ale odůvodněte.
    Bonus: Existuje v tomto případě přesnější varianta získání rychlosti a zrychlení, než přímočará aplikace numerické derivace?
  3. Máme zadán integrál $\int _0^{\pi } \sin ^2 x\,\d x$.
    1. Nalezněte hodnotu integrálu z geometrické úvahy za pomoci Pythagorovy věty.
    2. Nalezněte hodnotu integrálu pomocí Monte Carlo simulace. Určete směrodatnou odchylku výsledku.
      Bonus: Vyřešte Buffonovu úlohu ze seriálu (odhad hodnoty čísla $\pi$) pomocí MC simulace.
  4. Nalezněte vztah pro výpočet objemu šestidimenzinální koule pomocí metody Monte Carlo.
    Nápověda: Pythagorovu větu lze využít k měření vzdáleností i ve vyšších dimenzích.

Data k numerické derivaci

(10 bodů)1. Série 31. Ročníku - S. Rozjezdová

 

  1. Upravte výraz $\sqrt {x+1}-\sqrt {x}$ tak, aby nebyl náchylný k problémům cancellation, ordering a smearing. Ke kterým z těchto problémů byl původně náchylný a proč? Jaký je rozdíl ve výsledku původního a opraveného výrazu, pokud jej vyčíslíme v double precision pro $x=1{,}0 \cdot 10^{10}$?
  2. Popište funkci následujícího kódu. Jaký je rozdíl mezi funkcemi a() a b()? Pro jaké hodnoty x je lze použít? Nebojte se kód spustit a hrát si s hodnotou proměnné x. Určete také asymptotickou časovou složitost programu v závislosti na proměnné x.
    def a(n):
      if n == 0:
        return 1
      else:
        return n*a(n-1)
    def b(n):
      if n == 0:
        return 1.0
      else:
        return n*b(n-1)
    x=10
    print("{} {} {}".format(x, a(x), b(x)))
  3. Označme $o_k$ a $O_k$ obvod vepsaného a opsaného pravidelného $k$-úhelníku ke kružnici. Pak pro ně platí rekurentní vztahy \[\begin{equation*} O_{2k}=\frac {2o_k O_k}{o_k + O_k} ,\; o_{2k}=\sqrt {o_k O_{2k}} . \end {equation*}\] Napište program, který pomocí těchto vztahů vypočítá hodnotu $\pi $, začněte přitom s opsaným a vepsaným čtvercem. S jakou přesností dokážete $\pi $ takto aproximovat? Obdobu tohoto postupu původně navrhl a použil Archimedes.
  4. Lukáš a Mirek hrají hru. Házejí férovou mincí a když padne orel, dá Mirek Lukášovi jedno Fykosí tričko, když padne panna, dá jedno tričko Lukáš Mirkovi. Oba dohromady mají $t$ triček, z toho $l$ patří Lukášovi a $m$ Mirkovi. Pokud jednomu z hráčů dojdou trička, hra končí.
    1. Nechť $m = 3$ a Lukášova zásoba triček je nekonečná. Určete nejpravděpodobnější dobu trvání hry, tedy počet hodů mincí, po nichž hra skončí (protože Mirkovi dojdou trička).
    2. Nechť $m = 10$, $l = 20$. Proveďte simulaci pomocí generátoru pseudonáhodných čísel a nalezněte pravděpodobnost, že Mirek vyhraje všechna Lukášova trička. Celou hru nechejte proběhnout alespoň 100krát (čím více opakování, tím lépe).
    3. Jak se změní výsledek předchozí úlohy, jestliže Mirek minci „vylepší“ a panna nyní padá s pravděpodobností $5/9$?
      Bonus: Vypočtěte pravděpodobnosti analyticky a porovnejte výsledek se simulací.
  5. Mějme lineární kongruenční generátor s parametry $a = 65539$, $m = 2^{31}$, $c = 0$.
    1. Vygenerujte alespoň $1 000$ čísel a spočtěte jejich střední hodnotu a rozptyl. Porovnejte se střední hodnotou a rozptylem rovnoměrného rozdělení na stejném intervalu.
    2. Nalezněte vztah, který vyjádří číslo v generované sekvenci jako lineární kombinaci čísel na dvou předchozích pozicích, tj. nalezněte koeficienty $A$, $B$ v rekurentním vztahu $x_{k+2} = Ax_{k+1} + Bx_k$. Pokud budeme považovat každá tři po sobě následující čísla za souřadnice bodu ve trojrozměrném prostoru, jak rekurentní vztah ovlivní prostorové rozložení těchto bodů?
      Bonus: Vygenerujte sekvenci alespoň $10 000$ čísel a vykreslete 3D bodový graf, který ilustruje význam uvedeného rekurentního vztahu.

Mirek a Lukáš oprašovali staré učební texty.

(3 body)5. Série 25. Ročníku - 3. putování faraonů

figure

Aleš bydlí ve čtyřpokojovém bytě, jehož půdorys si můžete prohlédnout na obrázku. Mára se ale rozhodl, že Alešův byt zamoří nepříjemnými mravenci faraony. Faraoni po bytu šíleně rychle pobíhají a to ještě navíc šíleným způsobem – můžete uvažovat, že jednou za pět minut se 60$%$ mravenců přesune do sousedních místností a jenom 40$%$ jich zůstává pobíhat ve stejné místnosti, co předtím. Přitom se rovnoměrně rozbíhají do sousedních místností (když má místnost dvoje dveře, tak 30$%$ jich přeběhne do jedné a 30$%$ do druhé, když má troje dveře, tak se rozdělí po 20$%)$. A to se opakuje každých pět minut (uvažujte jenom kroky přesně po pěti minutách). Faraonům se v bytě líbí a tak neutíkají ven. Na druhou stranu se faraoni nemají šanci jinak dostat do bytu než propašováním a to dělá jenom Mára, takže jinak ani faraoni v bytu nepřibývají.

  • Když Mára zlomyslně umístí 1000 faraonů do předsíně (D), kolik faraonů bude v jednotlivých místnostech po pěti minutách? Kolik jich bude po deseti minutách a po patnácti minutách? (2 body)
  • Pokud jsme našli v místnostech počty mravenců $N_{A}=12$, $N_{B}=25$, $N_{C}=25$ a $N_{D}=37$, jak byli mravenci rozmístění před pěti minutami? (1 bod)
  • *Bonus:** Kolik mravenců by bylo v místnostech po hodně dlouhé (prakticky nekonečné) době, když by Mára rozmístil faraony jako v bodu a)? Závisí to na tom, jak Mára mravence rozmístil? A nejrafinovanější otázka - ustálí se počet mravenců na jedné hodnotě, nebo bude oscilovat? (bod/y navíc)

Karel si vzpomněl na Jordanův tvar matice při prohledávání literatury.

1. Série 22. Ročníku - 3. už mě nehoupej

Kačenka se rozhoupává na houpačce následujícím způsobem. Při největší výchylce houpačky se přikrčí, a když je houpačka v nejnižším bodě, opět se postaví. Tyto pohyby neustále opakuje. Poměr vzdálenosti těžiště Kačenky od osy otáčení při pokrčení a při stání je$2^{1⁄12}$ ≈ 1.06$$. Kolikrát se Kačenka zhoupne, než se amplituda houpání zdvojnásobí?

Z asijské olympiády přinesl Honza Prachař

1. Série 1. Ročníku - 3. klavír

Předpokládejte, že vlastníte výborný koncertní klavír. Chcete ho nechat naladit. Pozvete nejlepšího ladiče pian. Ten ladí klavír tak, že porovnává zvuk klavíru a etalonu (ladičky). Jak dlouho mu bude trvat perfektní naladění klavíru?

  • zhruba hodinu
  • zhruba den
  • zhruba týden
  • zhruba měsíc
  • nekonečně dlouho

1. Série 1. Ročníku - S. kapitán Brown

Představme si, že v přístavu vyšel z hospody H kapitán Brown. Kapitán je zcela opitý, a tak kráčí náhodně (krok vpřed i vzad jsou stejně pravděpodobné). Předpokládejme, že kráčí podél mola v přímkové dráze. Snaží se dojít ke své lodi, která kotví $k$ kroků od výchozího bodu H.

Nalezněte pravděpodobnost, že po $n$ krocích kapitán dojde ke své lodi. Úlohu se pokuste řešit analyticky, tj. přímo nalezněte hledanou pravděpodobnost $p=p(n,k)$. Úlohu se také pokuste modelovat. Pomocí vhodného generátoru náhodných čísel. (Zkuste třeba házet mincí, eventuelně použít mikropočítač atp.) nechte mnohokrát vyjít námořníka z počátečního bodu a sledujte v kolika pokusech dojde ke své lodi. (Zkuste číselně pro $n=20$, $k=8)$.

Rozřešení předchozí úlohy použijte k zodpovězení této otázky: kapitán udělá $n$ kroků; jaká je střední hodnota druhé mocniny jeho vzdálenosti od bodu H?

Návod: Požadované střední hodnoty jsou definovány takto. $$\langle r\rangle=\sum_{k}p(n,k)\cdot k$ \langle r^2\rangle=\sum_{k}p(n,k)\cdot$ k^2$$ Potřebné pravděpodobnosti $p(n,k)$ můžete odhadnout z vašich modelových pokusů, i když je neznáte analyticky.

Dovedli byste zdůvodnit analogii mezi kráčením kapitána Browna s pohybem pylových zrnek v kapalině? Je z hlediska vámi spočtených středních hodnot $\langle$ r\rangle$$, $\langle$ r^2\rangle$ podstatné, že kapitán Brown kráčí v přímce, kdežto pylová zrnka se pohybují v rovině?

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz