1. Série 16. Ročníku

Výběr série

Termín odeslání poštou: -
Termín uploadu: -

1. odporová síť

Pro síť na obr. (všechny odpory jsou stejné, jejich velikost označme R) určete odpor mezi dvěma vrcholy šestiúhelníku (uvažte všechna možná zapojení).

2. Archimédes

Pokuste se bez použití rovnic a vzorců vyřešit následující dvě úlohy. Pozor, vaše řešení musí být i tak naprosto exaktní.

  • V nádobě s vodou plave kus ledu. Co se stane s hladinou, až led roztaje?
  • Na misky rovnoramenných vah jsou položena stejně těžká tělesa. Co se stane, když misku ponoříme do vody?

3. hračka

Organizátor Fykosu dostal k narozeninám hračku, která je schematicky znázorněna na obr. Hračka, která slouží také jako záložka, se skládá z malého cínového kalíšku délky $l$ s cínovou kuličkou.

Poraďte organizátorovi, jakou rychlost má udělit kuličce, aby spadla do kalíšku. Uvažujme, že kalíšek je v klidu, je velmi malý v porovnání s délkou provázku a ztráty mechanické energie jsou minimální.

4. visící drát

Odhadněte rozdíl elektrických potenciálů mezi konci drátu délky $l$ visícího v gravitačním poli, který vzniká působením gravitace na volné elektrony. Jak přesný voltmetr bychom potřebovali k jeho změření?

P. gravitace

Odhadněte rozdíl mezi intenzitou gravitačního pole na povrchu Země a na vrcholu hory a pokuste se spočítat, jaké parametry musí mít hora, aby byl tento rozdíl nulový. (Pokuste se alespoň o kvalitativní odhad, tj. rozhodněte, zda je pole na hoře silnější nebo slabší.)

E. reakční doba

Změřte rychlost vedení vzruchu v nervu.

Návod: Změřte svou reakční dobu na optický nebo zvukový podnět (v tomto případě můžeme předpokládat, že vzruch dorazí do mozku okamžitě). Poté změřte rychlost své reakce na dotek konce ruky nebo nohy. Porovnáním výsledků pak stanovte rychost vedení vzruchu. Nezapomeňte, že pro správné statistické zpracování potřebujete naměřit minimálně destet hodnot.

S. komplexní čísla

 

  • Spočtěte reálnou a imaginární část sin($a+bi)$.
  • Pomocí komplexní symbolické metody odvoďte vztah pro rezonanční frekvenci paralelního RLC obvodu, tj. nalezněte frekvenci, pro kterou má při konstantním napětí celkový proud v obvodu minimální amplitudu.
  • Sečtěte pomocí komplexních čísel následující řady. (Návod: řada $A+Bi$ je geometrická.)

$$A=\sum_{n=0}^{\infty}e^{-n\delta}\cos(n\varphi),   B=\sum_{n=0}^{\infty}e^{-n\delta}\sin(n\varphi)$$

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz