6. Série 30. Ročníku

Výběr série

Série

1. ... dost těžké kulomety(3 body)

Na auto připevníme dopředu dva kulomety, které vystřelují kulky o hmotnosti $m$ = 25 g rychlostí $v$_{1} = 500 m·s^{ − 1}, každý s frekvencí 10 výstřelů za sekundu. Auto se rozjede po rovině rychlostí $v$_{2} = 80 km·h^{ − 1} a poté začne střílet. Kolik nábojů vystřílíme, než auto zastaví? Během palby nepřidáváme plyn, odpor vzduchu a kol zanedbáváme. Tepelné ztráty uvnitř zbraní jsou taktéž zanedbatelné.

2. ... upadlo(3 body)

Z jaké výšky nad povrchem neutronové hvězdy bychom museli „upustit“ předmět, aby dopadl na její povrch v rychlosti 0,1 $c$ (0,1 rychlosti světla). Naše neutronové hvězda má hmotnost 1,5násobek hmotnosti Slunce a průměr $d$ = 10 km. Zanedbejte atmosféru neutronové hvězdy a její rotaci. Zanedbejte relativistické korekce. Srovnejte ale jakého výsledku byste dosáhli, pokud by pád probíhal v homogenním gravitačním poli (které má intenzitu stejnou jako na povrchu planety) s tím, kdy pád probíhá v radiálním gravitačním poli. Bonus: Uvažujte korekci na speciální teorii relativity v případě pádu v homogenním poli.

3. ... relativistický Zenonův paradox(6 bodů)

Superman a Flash se rozhodli, že si dají závod. Závod se koná v hlubokém vesmíru, protože na Zemi není dostatečně dlouhá rovná pláž. Flash, protože je pomalejší, startuje s délkovým náskokem $l$ před Supermanem. Flash v jednu chvíli vyběhne s konstantní rychlostí $v$_{F} srovnatelnou s rychlostí světla. Ve chvíli, kdy si Superman všimne, že Flash vyběhl, vyběhne také, a to konstantní rychlostí $v$_{S} > $v$_{F}. Za jak dlouho Superman Flashe dožene (z pohledu Supermana)? A za jak dlouho Flashe dožene Superman (z pohledu Flashe)? A byl vůbec závod spravedlivě odstartován, resp. dokázali byste vymyslet spravedlivější způsob (přičemž náskok $l$ má být ponechán)?

4. ... zastřel si svého potkana(7 bodů)

Mirek by rád zastřelil potkana, kterého vídá na kolejích. Připravil si tedy jednoduchou vzduchovou pušku, kterou si můžeme modelovat jako trubku s konstantním průřezem $S$ = 15 mm² a délkou $l$ = 30 cm, která je na jedné straně uzavřená a na druhé otevřená. Do ní se chystá Mirek umístit náboj hmotnosti $m$ = 2 g, který trubku akorát utěsní, a to ve vzdálenosti $d$ = 3 cm od uzavřeného konce. Náboj zde zatím nechá upevněný v klidu a natlakuje uzavřenou část trubky na určitý tlak $p$_{0}. Posléze náboj uvolní. Chce aby na konci ústí byla minimálně rychlost náboje $v$ = 90 m·s^{ − 1}. Poraďte mu, na jaký tlak by musel vzduchovou pušku natlakovat, aby náboj vyšel s takovou rychlostí, pokud by plyn byl ideální, a diskutujte realističnost uspořádání. Předpokládejte, že náboj je uvolňován kvazistatickým adiabatickým dějem, kde $κ$ = 7 ⁄ 5, protože se jedná o dvouatomový plyn. Uvažujte, že z vnějšku působí na náboj atmosférický tlak $p$_{a} = 10^{5} Pa. Zanedbejte energetické ztráty vyvolané třením, odporem vzduchu a stlačováním plynu před nábojem.

5. ... přetáhni ho přes prsty(8 bodů)

Máme homogenní tyč konstantního průřezu délky $l$ připevněnou na jednom konci k otočnému kloubu. Na počátku směřuje tyč přímo vzhůru a jsme v homogenním tíhovém poli se zrychlením o velikosti $g$. Tyč se vlivem mírného závanu větru začne otáčet a „padat“ dolů, ale stále je držena otočným kloubem. S jakým zrychlením se bude pohybovat konec tyče v průběhu času?

P. ... vypařující se asteroid(9 bodů)

Umístíme hodně velký kus ledu, dejme tomu o průměru 1 km, do blízkosti hvězdy podobné Slunci na kruhovou dráhu. Blízkost je tak velká, že rovnovážná teplota černého tělesa by v této vzdálenosti byla zhruba 30 ° C. Co se bude dít s takovým asteroidem a jeho drahou? Asteroid nemá vázanou rotaci.

E. ... skladba jako od Cimrmana(12 bodů)

Sežeňte si skleničku na víno, ideálně tenkou se zabroušeným okrajem. Nejprve změřte vnitřní průměr skleničky v závislosti na výšce ode dna. Pak ji rozeznívejte, ideálně navlhčeným prstem pohybem po jejím okraji – někdy to chce trochu trpělivosti. Změřte závislost frekvence tónů, které sklenička vydává v závislosti na výšce naplnění vody v ní (alespoň pro 5 hladin vody a dvě frekvence v každé výšce). Nápověda: Pokud je sklenička tenkostěnná, můžete její vnitřní rozměry považovat za stejné jako vnější a díky tomu závislost jejího průměru na výšce určit z vhodné fotografie s měřítkem. Pro měření zvuku doporučujeme freeware program Audacity (Rozbor → Kreslit spektrum).

S. ... nelineární(10 bodů)

 

  • Zkuste vlastními slovy popsat, k čemu a jak se používá nelineární regrese (postačí vlastními slovy popsat následující: model nelineární regrese, způsob odhadu regresních koeficientů, vyjádření nejistot odhadů regresních koeficientů a hodnot prokládané funkce, statistické testy hodnot regresních koeficientů, identifikovatelnost parametrů a způsob volby prokládané funkce). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru regrese1.csv naleznete dvojice hodnot  ($x_{i}$,$y_{i}$). Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě sinusoida, tedy funkce tvaru $$f(x)=a b\cdot\sin(cx d)\,.$$ Vykreslete graf naměřených hodnot a proložené funkce a stručně ho okomentujte (takovýto graf musí mít všechny náležitosti). Není potřeba dělat regresní diagnostiku.

Nápověda: Dejte si pozor na identifikovatelnost parametrů v tomto modelu a vhodné omezující podmínky na parametr $c$.

  • V přiloženém datovém souboru regrese2.csv naleznete dvojice hodnot  ($x_{i}$,$y_{i}$). Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě exponenciála, tedy funkce tvaru $$f(x)=a \mathrm{e}^{bx c}\,.$$ Určete hodnoty odhadů všech regresních koeficientů včetně nejistot měření.

Nápověda: Grafickou metodou ověřte předpoklad homoskedasticity a v případě potřeby pro určení nejistot měření regresních koeficientů použijte Whiteův (sendvičový) odhad kovarianční matice.

  • V přiloženém datovém souboru regrese3.csv naleznete dvojice hodnot  ($x_{i}$,$y_{i}$). Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě hyperbola, tedy funkce tvaru $$f(x)=a \frac{1}{bx c}\,.$$ Vykreslete graf naměřených dat v podobě průměrů a chybových úseček a proložené funkce a stručně ho okomentujte (takovýto graf musí mít všechny náležitosti). Proveďte regresní diagnostiku.

Bonus:   V přiloženém datovém souboru regrese4.csv naleznete dvojice hodnot  ($x_{i}$,$y_{i}$). Těmito daty chceme proložit teoretickou závislost, která je ovšem příliš složitá na analytické vyjádření. Proložte těmito daty regresní spliny (s vhodně zvolenými uzly a vhodně zvoleným stupněm). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

statistická fyzika