Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (23)elektrické pole (71)elektrický proud (75)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (71)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (154)vlnění (51)

ostatní

(12 bodů)3. Série 30. Ročníku - E. reflexní náramek

Změřte co nejvíce charakteristik samonavíjecího reflexního náramku. Zajímá nás především:

  • Náramek je vyztužen kusem plechu, který může být ohnut podélně (svinutý náramek) nebo příčně (narovnaný náramek). Jaký poloměr křivosti mají tyto ohyby, pokud na plech nepůsobí vnější síla?
  • Pokud náramek narovnáme a budeme ohýbat v jednom místě, při jakém úhlu přejde do ohnutého stavu? Při jakém úhlu se opět narovná? (Pozorujeme hysterezi?)
  • Jaký moment síly je potřebný k ohnutí náramku?
  • Je některý ze stavů náramku (svinutý nebo narovnaný) energeticky výhodnější? Odhadněte o kolik.

Erikovi se ne a ne ohnout.

(10 bodů)3. Série 30. Ročníku - S. limitní

 

  • Zkuste vlastními slovy popsat postup konstrukce intervalových odhadů střední hodnoty v případě obecného rozdělení měřených dat (postačí vlastními slovy popsat následující: centrální limitní věta a předpoklady jejího použití, kovariance a korelace (a jejich odhady), vícerozměrná centrální limitní věta a předpoklady jejího použití, zákon šíření nejistot a kdy ho lze použít). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru mereni3-1.csv najdete výsledky měření určité fyzikální veličiny $v$. Předpokládejme, že si nemůžeme být jisti, zda mají měřená data normální rozdělení. Vyjádřete nejistotu měření této fyzikální veličiny (nejistotu typu B neuvažujte), zkonstruujte intervalový odhady na základě CLV a stručně interpretujte jeho význam. Jak by se změnily výsledky a interpretace, pokud bychom měli k dispozici jen čtvrtinu měření (řekněme první čtvrtinu dat z datového souboru)?
  • Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít využít pro dosazení do vzorce $v = \frac{1}{2} x y^2$. Předpokládejme, že díky znalosti způsobu měření jsme si jisti, že jsou všechna měření na sobě nezávislá a ze zpracování naměřených dat měření máme následující výsledky, které jsou založeny na velkém počtu měření (více než 30 měření každé fyzikální veličiny) $x = (5,\! 2 \pm 0,\! 1)$, $y = (12,\! 84 \pm 0,\! 06)$. Určete odhad fyzikální veličiny $v$ a nejistotu měření fyzikální veličiny $v$.

Nápověda: Mohly by se vám hodit následující vztahy: $$\frac{\partial}{\partial x} \( \frac {1}{2} x y^2 \) = \frac {1}{2} y^2\, ,$$ $$\frac{\partial}{\partial y} \( \frac {1}{2} x y^2 \) = x y \, .$$ * Pomocí simulace ve výpočetním prostředí //R// demonstrujte platnost centrální limitní věty. Tj. generujte $n$-tice nezávislých realizací náhodné veličiny, která nemá normální rozdělení (pro tento případ použijte exponenciální, rovnoměrné a Poissonovo rozdělení s libovolně zvolenými parametry) a na histogramu ukažte, že pokud na data provedeme následující transformaci $\sqrt{n}\frac{\overline{x_n - \mu}}{S_n}\, ,$ takto transformovaná data už budou rozdělena přibližně podle normálního rozdělení $N(0,1)$. (Součástí hodnocení bude i hodnocení vzhledu grafů – zejména vhodně zvolené popisky os a legenda.)

Bonus: Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít dosadit do vzorce $$v = x^2 \sin{y}\, .$$ Uvažujme nejobecnější model měření (tj. měřená data nemají normální rozdělení a měření různých fyzikálních veličin na sobě mohou být závislá). V datovém souboru mereni3-2.csv máme výsledky měření fyzikálních veličin $x$ a $y$, určete nejistotu určení veličiny $v$ a zkonstruujte pro ni intervalový odhad.

Michal se pokusil vymyslet limitně těžké zadání seriálové úlohy.

(12 bodů)2. Série 30. Ročníku - E. jedno plnotučné, prosím

Tučnější mléko by mělo být „bělejší“ – více světla rozptýlí a méně propustí skrz. Proveďte měření tučnosti mléka na základě rozptylu světla, přičemž jako barevnou škálu použijte přiložený papírek (pokud jste neřešili první sérii a chcete obdržet papírek, napište nám na fykos@fykos.cz). Rozdíly nejlépe vyniknou, pokud do různých druhů mléka budete přidávat barvivo tak, aby jej v mléku byla stejná (malá) koncentrace. Jako barvivo můžete použít černou tuš. Samozřejmě je možno použít jakékoliv jiné barvivo, ale pak si budete muset vyrobit vlastní barevnou škálu, kterou prosím přiložte k řešení. Zrealizujte měření pro různé druhy mléka a směsi mléka a vody. Diskutujte spolehlivost určení obsahu tuku.

Mára byl bledý jako stěna.

(10 bodů)2. Série 30. Ročníku - S. odhadnutelná

 

  • Zkuste vlastními slovy popsat, k čemu slouží intervalový odhad střední hodnoty v normálním rozdělení a uveďte jeho fyzikální interpretaci (postačí vlastními slovy popsat následující: fyzikální interpretace odhadu střední hodnoty, rozdíl mezi (bodovým) odhadem a intervalovým odhadem, nejdůležitější vlastnost intervalového odhadu, metoda zkráceného zápisu intervalového odhadu, nejistota měření). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru mereni1.csv najdete naměřené hodnoty určité fyzikální veličiny (uvažujte nejistotu typu B $s_\mathrm{B} = 0,\! 1$ ). Zkonstruujte z těchto dat bodový i intervalový odhad měřené fyzikální veličiny a krátce interpretujte jejich význam.
  • Předpokládejme, že měříme určitou fyzikální veličinu a víme, že vlivem použité metody měření budou mít naměřená data rozptyl rovný konstantě $c$ (nejistotu typu B neuvažujte). Kolik musíme přibližně provést měření, abychom dosáhli nejistoty měření menší než $s$?
  • V přiloženém datovém souboru mereni2.csv najdete data měření stejné fyzikální veličiny dvěma různými způsoby (nejistotu typu B neuvažujte). U které metody byla použitá měřící aparatura přesnější? Který způsob měření dal přesnější výsledek měření? U obou otázek své závěry i stručně zdůvodněte.

Bonus: Zkuste odvodit, že v normálním rozdělení je výběrový rozptyl nestranným odhadem skutečného rozptylu (tj. střední hodnota výběrového rozptylu je rovna skutečnému rozptylu).

Pro řešení tohoto úkolu můžete použít libovolné zdroje (pokud je budete řádně citovat). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal si dal v zadání pozor na hrubé chyby.

(5 bodů)1. Série 30. Ročníku - 3. hopsa hejsa

Mějme ideální hopík dokonalé odrazivosti a zanedbatelných rozměrů. Tento hopík hodíme z nekonečných schodů, kde jeden schod má výšku $h$ a délku $l$. Odrazy probíhají beze tření. Popište závislost nejvyšší dosažené výšky (měřeno od prvního schodu) hopíku po $n$-tém odrazu na počátečních parametrech.

Lubošek potkal v městské dopravě Mikuláše.

(7 bodů)1. Série 30. Ročníku - 5. na procházce

Katka si vyšla ráno před přednáškou na procházku, aby vyvenčila svého potkana. Vyšla s ním na rovný palouk, a když byl potkan ve vzdálenosti $x_{1}=50\; \mathrm{m}$ od ní, hodila mu míček rychlostí $v_{0}=25\; \mathrm{m}\cdot\mathrm{s}^{-1}$ pod úhlem $α_{0}$. V okamžiku výhozu potkan vyběhl směrem ke Katce rychlostí $v_{1} = 5\; \mathrm{m}\cdot\mathrm{s}^{-1}$. Nalezněte obecnou závislost úhlu $φ$ na čase, kde $φ(t)$ označuje úhel mezi vodorovnou rovinou a spojnicí potkana a míčku, a vykreslete tuto závislost do grafu. Na základě grafu určete, zda je možné, aby míček zakryl potkanovi Slunce, jenž se nachází ve výšce $φ_{0}=50\; \mathrm{°}$ přímo před potkanem. Počítejte s tíhovým zrychlením $g=9,\! 81\; \mathrm{m}\cdot \mathrm{s}^{-2}$ a pro zjednodušení uvažujte, že házíme z nulové výšky.

Mirek pozoroval, co se děje v trávě.

(12 bodů)1. Série 30. Ročníku - E. Pechschnitte

Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu vrstvy? K experimentálním výsledkům hledejte teoretická zdůvodnění. Pro vaše měření použijte toastový chléb.

Terka má stůl ve špatné výšce.

(10 bodů)1. Série 30. Ročníku - S. náhodná

 

  • Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná veličina, rozdělení náhodné veličiny, realizace náhodné veličiny, střední hodnota, rozptyl, histogram).
  • Vygenerujte grafy hustot pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot) všech v seriálu popsaných rozdělení náhodných veličin pro různé typy parametrů daného rozdělení a popište, jaký má změna parametru/ů vliv na tvar hustoty pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot).
  • Vygenerujte z přiložených dat histogramy a pokuste se určit, ze kterého rozdělení tato data pocházejí.
  • Definujme si náhodnou veličinu $X$ jako výsledek hodu „férovou“ šestistěnnou kostkou (všechna čísla padají se stejnou pravděpodobností). Určete rozdělení náhodné veličiny $X$ a dále spočítejte $\mathrm{E}X$ a $\mathrm{var}X$.

Bonus: Uveďte příklad dvou náhodných veličin, které mají stejnou střední hodnotu i stejný rozptyl, ale mají různá rozdělení.

Pro práci s daty a vykreslování grafů použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal stanovil zadání úlohy náhodně, snad nebude moc těžká.

(2 body)6. Série 29. Ročníku - 1. mám toho plnou hlavu

V roce 2015 byla udělena Nobelova cena za fyziku za experimentální prokázání oscilace neutrin. O neutrinech jste už jistě někdy slyšeli a možná víte, že s látkou interagují jen velmi slabě a proto dokáží bez zpomalení proletět Zemí a jinými velkými objekty. Zkuste za pomoci literatury a internetových zdrojů určit, kolik neutrin se v jednom okamžiku nachází v průměrném člověku. Nezapomeňte citovat zdroje!

Mirek měl pocit naplnění.

(4 body)6. Série 29. Ročníku - 3. jedeme z kopce

Autem o hmotnosti $M$ jedeme nahoru do kopce a dolů ze stejného kopce se sklonem $α$ stejnou rychlostí $v$ se zařazeným stejným převodovým stupněm, a tedy stejnými otáčkami motoru. Jaký je rozdíl tažného (do kopce) a brzdného (s kopce) výkonu motoru?

Napadlo Lukáše v kopci směrem na Rumburk.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz