Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (65)elektrický proud (68)gravitační pole (72)hydromechanika (133)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (250)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (145)relativistická fyzika (35)statistická fyzika (20)termodynamika (130)vlnění (46)

vlnová optika

6. Série 34. Ročníku - S. nabitá struna

Uvažujte napnutou strunu o délkové hustotě $\rho $, která je navíc rovnoměrně nabitá s délkovou nábojovou hustotou $\lambda $. Napětí ve struně je $T$. Struna se nachází v magnetickém poli o konstantní velikosti $B$, jež je ve směru struny v rovnovážné poloze. Vaším úkolem bude popsat několik aspektů kmitání této struny. Nejprve bude třeba sestrojit vlnovou rovnici. Zanedbejte indukční efekty (předpokládejte, že struna je perfektně izolující, a tedy nábojová hustota zůstává konstantní) a určete lorentzovskou sílu na jednotku délky pro malé oscilace struny v obou směrech kolmých na směr jejího napnutí. Tuto sílu použijte pro sestavení vlnové rovnice (ta dále obsahuje sílu plynoucí z napětí struny). Proveďte fourierovskou substituci a určete disperzní vztah v aproximaci malého pole $B$; konkrétně uvažujte členy do prvního řádu v $\beta = \frac {\lambda B}{k \sqrt {\rho T}} \ll 1$, kde $k$ je vlnové číslo. Určete dva polarizační vektory, tentokrát pouze do nultého řádu v $\beta $. Nyní předpokládejte, že vytvoříme v určitém místě struny vlnu, která bude oscilovat pouze v jednom směru. V jaké vzdálenosti od původního bodu bude vlna stočená o devadesát stupňů?

Štěpán vzpomínal na třetí seriálovou úlohu.

5. Série 34. Ročníku - S. rezonance a tlumení

  1. Na napnutém laně mohou existovat vlny ve výchylce $\f {u}{x, t}$ z rovnovážné polohy, které splňují vlnovou rovnici s tlumením

\[\begin{equation*} \ppder {u}{t} = v^2 \ppder {u}{x} + \Gamma \pder {u}{x}  , \end {equation*}\] kde $v$ je fázová rychlost a $\Gamma $ je tlumící koeficient. Proveďte fourierovskou substituci a určete disperzní vztah. Vyřešte jej pro vlnové číslo $k$. Jakou podmínku, vyjádřenou pomocí frekvence $\omega $, fázové rychlosti $v$ a koeficientu $\Gamma $, musí vlny splňovat, aby byly na laně pozorovány uzly (body, ve kterých lano zůstává v rovnovážné poloze, ale v jejichž okolí se pohybuje)?

  1. Uvažujte švihadlo, přichycené na jednom konci k nehybné stěně. Ve vzdálenosti $L$ od stěny jej chytneme do ruky a začneme s ním pohybovat nahoru a dolů, čímž v něm vytvoříme vlnění. Švihadlo s délkovou hustotou $\lambda $ udržujeme v napětí $T$ ve směru od stěny, výchylka tedy splňuje rovnici

\[\begin{equation*} \ppder {u}{t} = \frac {T}{\lambda } \ppder {u}{x}  . \end {equation*}\] Pro výchylku konce švihadla, se kterým pohybujeme, platí $\f {u_0}{t} = A \f {\cos }{\omega _0 t}$. Předpokládejte, že řešení lze zapsat ve formě dvou rovinných vln, pohybujících se v opačných směrech. Nalezněte takové řešení pouze s využitím zadaných parametrů, tj. $T$, $\lambda $, $L$, $A$ a $\omega _0$. Výsledné řešení má amplitudu rostoucí nade všechny meze pro určité frekvence. Určete jejich hodnoty a jim odpovídající vlnové délky.

Štěpán si hrál se švihadlem.

4. Série 34. Ročníku - 3. křivá optika

Mějme bodový zdroj světla a rovinnou skleněnou desku s indexem lomu $n = 1{,}50$. V místě paty kolmice od zdroje na desku se uvnitř desky nacházejí vlnoplochy s poloměrem křivosti $R = 5{,}00 \mathrm{m}$. Jaká je skutečná vzdálenost zdroje a desky?

Dodo je pěkný křivák.

1. Série 34. Ročníku - 4. solární plachetnice

Ve vzdálenosti $0,8 \mathrm{au}$ od Slunce se vznáší solární plachetnice ve tvaru tenké desky o ploše $S = 500 \mathrm{m^2}$ s plošnou hustotou $\sigma =1,4 \mathrm{kg\cdot m^{-2}}$. Jakou silou na ni působí záření dopadající ze Slunce v okamžiku, kdy se plachetnice právě začíná pohybovat? Jaké bude v mít tu chvíli zrychlení? Zářivý výkon Slunce je $L_{\odot } =3,826 \cdot 10^{26} \mathrm{W}$. Předpokládejte, že záření dopadá na plachetnici kolmo a odráží se pružně.

Nápověda: Doporučujeme najít zrychlení při malé počáteční rychlosti $v_0$ a poté dosadit $v_0 = 0$.

Danka si chce zalétat.

5. Série 33. Ročníku - 5. opticko-relativistická

Určete, jaký fázový posun $\Delta \Phi $ vznikne přechodem laserového svazku s vlnovou délkou $\lambda _0$ přes skleněnou desku s klidovou tloušťkou $h$ a s indexem lomu $n$, která se pohybuje ve směru svazku rovnoměrně rychlostí $v$, oproti případu, kdy je deska vůči zdroji i pozorovateli v klidu. Zajímá nás především první nenulový člen rozvoje podle rychlosti desky.

Dodo a optické praktikum.

1. Série 33. Ročníku - 3. infra sauna

Dano pokračuje ve vybavování svojí vily další saunou – tentokrát infra saunou. Chce umístit zářivku těsně pod strop sauny ve výšce $H=2{,}5 \mathrm{m}$ nad zemí. Emituje-li zářič energii s délkovým zářivým výkonem $p = 1{,}2 \mathrm{kW\cdot m^{-1}}$, jaká intenzita a energie záření bude dopadat na povrch lidského těla zhruba $h=50 \mathrm{cm}$ nad zemí? Zářivka je rovná, září homogenně a je upevněna těsně pod středem stropu od jednoho kraje sauny do druhého.

Nápověda: Pro jednoduchost uvažujte, že stěny, kde zářivka končí, a strop jsou zrcadla a že podlaha a stěny, kterých se zářivka nedotýká, záření dokonale absorbují a nevyzařují zpět do místnosti.

Karel byl ve wellness na Slovensku.

1. Série 33. Ročníku - 5. obecně relativistická

Starman se před odletem do kosmu na cestu k Marsu ve svém voze Tesla Roadster domluvil s Muskem, že jakmile bude ve vzdálenosti $r=5{,}0 \cdot 10^{6} \mathrm{km}$ od hmotného středu Země, tak na něj Musk zasvítí výkonným zeleným laserem. Vlnová délka laseru se vlivem gravitačního pole Země zvětší. Porovnejte tuto změnu vlnové délky s vlivem elektromagnetického Dopplerova jevu, vzdaluje-li se Starman od Muska rychlostí $v=4{,}0 \mathrm{km\cdot s^{-1}}$. Uvažujte, že oba jevy působí zvlášť.

Vašek by rád výlet se Starmanem.

3. Série 32. Ročníku - 3. teplíčko v Dysonově sféře

Jaký poloměr by musela mít Dysonova sféra, aby obklopila hvězdu se zářivým výkonem Slunce tak, že na vnějším povrchu této sféry by byla teplota $t= 25 \mathrm{\C }$? Neuvažujte přítomnost atmosféry v Dysonově sféře. Dysonova sféra by měla být relativně tenká dutá struktura kulového tvaru obklopující danou hvězdu.

Karel má rád Dysonovy sféry.

5. Série 31. Ročníku - E. nezbedné fotony

Spolu se zadáním úlohy vám přišly polarizační brýle. Máte tedy 2 polarizační filtry. Když dáte dva rovnoběžně na sebe směrem polarizace kolmo, nemělo by skrz ně procházet téměř žádné světlo. Pokud ale mezi ně nyní vložíte třetí vhodně natočený filtr, můžete pozorovat, že bude procházet nemalé množství světla. Změřte závislost propustnosti na úhlu natočení prostředního filtru.

Poznámka: Jako první filtr a zároveň zdroj světla doporučujeme použít displej.

Matěj.

3. Série 30. Ročníku - 1. dlouhý film

Stahujete si svůj oblíbený film o velikosti $12\; \mathrm{GB}$ rychlostí $10\; \mathrm{MB/s}$. Uvažujte, že signál se po kroucené dvojlince pohybuje rychlostí světla a modulace rozprostírá přenosovou rychlost rovnoměrně, tzn. byla-li by $1\; \mathrm{b/s}$, musíme přijmout signál za celou sekundu k obdržení $1$ bitu informace. Jak dlouhý úsek kabelu dokáže film zaplnit svými daty, pokud se bude šířit dostatečně dlouhým kabelem?

Kolega tvrdil Michalovi, že 100Gb ethernet má rámce menší než čip.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz