Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (60)biofyzika (15)chemie (16)elektrické pole (54)elektrický proud (56)gravitační pole (56)hydromechanika (103)jaderná fyzika (31)kmitání (35)kvantová fyzika (21)magnetické pole (27)matematika (73)mechanika hmotného bodu (192)mechanika plynů (75)mechanika tuhého tělesa (165)molekulová fyzika (45)geometrická optika (62)vlnová optika (42)ostatní (125)relativistická fyzika (31)statistická fyzika (21)termodynamika (106)vlnění (38)

(7 bodů)1. Série 32. Ročníku - 4. pád z okna

Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.

Nápověda: Pro radu jděte k panu Dopplerovi.

(7 bodů)3. Série 30. Ročníku - 3. kde to píská

Verčiny uši lze aproximovat dvěma bodovými detektory ve vzdálenosti $d$, které detekují zvukové vlny ze všech směrů stejně dobře. Verča umí polohu známého zdroje zvuku poslepu určit velice přesně, proto jednoho dne, když se probudila, vyzvala své přátele k tomu, aby ji vyzkoušeli. Jenže Verča si v jednom uchu zapomněla špunt, který snižuje intenzitu zvuku v jejím levém uchu $k$-krát. Verči byly zavázány oči a zdroj byl umístěn do vzdálenosti $y$ před ni a o $x$ napravo (či $-x$ nalevo). Určete, na které místo $(x',y')$ Verča ukáže, jestliže uši rozeznávají polohu zdroje podle hlasitosti zvuku.

Luboška vyděsil telefon s jedním sluchátkem v uších.

(2 body)5. Série 28. Ročníku - 2. slyším dobře, to nemohu říct

Ve vzdálenosti $d=5\;\mathrm{m}$ od bodového zdroje zvuku slyšíme zvuk o hladině intenzity $L_{1}=90 \jd{dB}$. V jaké vzdálenosti od zdroje je hladina intenzity tohoto zvuku $L_{2}=50\jd{dB}$?

Karel chtěl zase po pár letech zadat něco z akustiky.

(5 bodů)3. Série 28. Ročníku - P. zahvízdej mi něco

Vysvětlete, na jakém principu funguje hvízdání pomocí úst. Uvažujte přitom nejprve jednoduché modely a postupně přejděte ke složitějším. Pak vyberte nejlepší z nich a na základě něj odhadněte, v jakém rozsahu se může pohybovat základní frekvence hvizdu. (Pokud umíte hvízdat, můžete zkusit posoudit přesnost vašeho odhadu pomocí experimentu.)

Mirek chce nenápadně zjistit, kolik řešitelů taky neumí hvízdat.

(4 body)3. Série 26. Ročníku - 4. nadzvuková nebo podzvuková?

Uvažujte bombu padající volným pádem svisle dolů na cíl. Po celou dobu pohybu, který začíná z klidu, vydává vlivem tření o vzduch zvuk, který se šíří rychlostí $c=340~ \rm m\cdot s^{-1}$. Jaká je maximální možná rychlost dopadu, aby ti, na které bomba dopadne, ji ještě za živa slyšeli?

Lukáš sledoval kačenky na rybníce.

6. Série 24. Ročníku - S. všehochuť

 

  • Předpokládejme, že máme radioaktivní látku $X$, která se rozpadá na látku $Y$ s poločasem rozpadu $T_{1}$, ta se následně rozpadá na stabilní látku $Z$ s poločasem rozpadu $T_{2}$. Jak závisí koncentrace látky $Y$ na čase, pokud jsme na počátku měli pouze látku $X?$
  • Vypočtěte, jak vypadá difrakční obrazec vzniklý průchodem světla o vlnové délce λ štěrbinou šířky $d$.
  • Pokuste se najít frekvence ω, pro které existuje řešení vlnové rovnice na čtverci o hraně $a$. Kolik různých funkcí odpovídá jedné úhlové frekvenci?

Nápověda: Pro prostorovou část předpokládejte řešení ve tvaru $A(x,y) = X(x) Y(y)$.

Ozářilo Lukáše

5. Série 24. Ročníku - E. strunatci

Vytvořte si zařízení, na kterém bude moci být upevněna struna (či gumička) s proměnlivou délkou tak, že bude napínána stále stejnou silou. Prozkoumejte, jak se mění hlavní frekvence vydávané strunou (či gumičkou) v závislosti na délce struny. Na zpracování zvuku můžete použít například program Audacity.

Karel chtěl zadat něco z akustiky

2. Série 24. Ročníku - E. Jin a Young

Pravděpodobně jsme již všichni slyšeli o dvouštěrbinovém Youngově experimentu. Zkoušel si ale někdo z Vás podomácku „vyrobit“ interferenční proužky na stínítku osvětleném dvěma štěrbinami? K optickému Youngově pokusu existují i mechanická analogie, kdy sledujeme skládání dvou vlnění na vodě, nebo akustická analogie, kdy se skládají dvě zvukové vlny. Ve všech třech případech je možné zkoumat interferenční obrazec vznikající v určité rovině. Pokuste se realizovat jeden nebo i více z uvedených třech pokusů a získat tak interferenční obrazec. Poté určete vlnovou délku, případně rychlost šíření vlnění. Uvítáme fotodokumentaci.

ze Španělska posílá Marek

2. Série 24. Ročníku - P. šmoulové a Darth Vader

Po nadýchání se helia se člověku mění hlas tak, že mluví jako šmoula. Stejně to funguje, nadýcháte-li se vodíku (kuřáci, pozor!). Ale dá se dosáhnout i změny na hlas podobný Darthu Vaderovi, nejznámějším médiem je fluorid sírový. Jak funguje změna hlasu? Pokuste se ji kvantitativně odhadnout.

U chemiků sebral Michal

5. Série 23. Ročníku - E. ozvěna

Když stojíte v malém prostoru a zahrajete správný tón, můžete objevit jeho rezonanční frekvenci. Protože rezonanční frekvence přímo souvisí s rozměry rezonátoru, umíme je z její znalosti určit. Vyhlédněte si doma vhodnou místnost (ideální jsou malé rozměry a holé stěny; třeba toaleta), tímto způsobem ji změřte a porovnejte výsledky se skutečností.

na záchodě si notoval Jakub Michálek

6. Série 22. Ročníku - E. vratné lahve

Kupte si standardní skleněnou lahev od piva nebo minerálky a změřte, jak závisí výška tónu vydaného po fouknutí na hrdlo na výšce vodní hladiny v lahvi.

vymysleli organizátoři na pravidelné schůzi

5. Série 22. Ročníku - P. rámus

Pokuste se odhadnout, jakou energii přijme tělo návštěvníka rockového koncertu. Svůj odhad odůvodněte.

na schůzku donesl Honza Jelínek

2. Série 22. Ročníku - 4. do nekonečna a ještě dál

Bohatý vesmírný turista si zaplatil výlet do hlubokého vesmíru. Raketa vyletí ze Země a rovnoměrně zrychluje se zrychlením $a$, což si turista může ověřit například pouštěním míčku. Nudnou cestu si krátí zíráním ze zadního okénka, pozorováním Země. Po nějaké době (Jaké? Aspoň řádový odhad.) se mu začne zdát, že něco není v pořádku – Země se pomalu přestává zmenšovat. Z toho usoudí, že raketa zpomaluje, což neodpovídá tomu, že raketa stále má zrychlení $a$. To ale turistu nenapadne a rozlobeně jde za kapitánem požadovat vysvětlení. Co mu kapitán řekne?

Předpokládáme, že turista vidí celé elektromagnetické spektrum a má železné nervy a pozorování vydrží.

o prázdninách zkoušel Marek Pechal

2. Série 22. Ročníku - S. Young a vlnová povaha světla

figure

K zadání úlohy

  1. Jaký tvar interferenčních proužků na stínítku byste očekávali v následujících dvou sestavách? Najděte rovnice křivek maximální intenzity a zkuste jich několik načrtnout.
  2. Ukažte, jak by dopadl Youngův experiment, jestliže by se světlo chovalo podle Newtonových představ (tzn. difrakce ano, interference ne). nezapomeňte vzít v úvahu různý úhel dopadu světla na různá místa stínítka.
  3. Užitím vyloženého kvantověmechanického popisu určete rozložení intenzity, jaké by dostal Jöhnsson při použití čtyřštěrbiny (tedy čtyř úzkých rovnoběžných otvorů rozmístěných ve vzdálenostech $b$ od sebe). Načrtněte reprezentativní úsek grafu a okomentujte přednosti většího počtu otvorů.

Autoři seriálu

4. Série 21. Ročníku - 3. sopka burácí

Nedávno v televizi proběhl dokument o výbuchu sopky Krakatoa v srpnu 1883. Pozoruhodné je, že rachot výbuchu dočasně ohlušil lidi (nějakou dobu nic neslyšeli) ve vzdálenosti $50\,\jd{ km}$ od vulkánu. Dokonce byl slyšet jako vzdálené hřmění ve městě Alice Springs v centrální Austrálii, tj. asi $5 000\,\jd{ km}$ (slovy pět tisíc) od sopky.

Jaká byla hodnota akustického tlaku v $\jd{dB}$ v místě výbuchu? Můžeme předpokládat, že platí zákon úbytku intenzity se čtvercem vzdálenosti, či jaký zákon úbytku intenzity bude platit pro tento případ?

Úlohu vymyslel pan Janata inspirován zmíněným dokumentem.

6. Série 20. Ročníku - P. jak vypadají ufoni?

Zamyslete se nad tím, jestli by nějaké zvíře mohlo teoreticky komunikovat pomocí elektromagnetických vln rádiových frekvencí $(10\, \jd{Hz}\, –\, 100\, \jd{MHz}). Zkuste navrhnout, jak by vypadaly biologické ekvivalenty potřebných elektrických součástek.

Zadal Michael Komm doufaje, že přijdete na něco zajímavého.

5. Série 20. Ročníku - 1. smrt klavíristy

Z okna výškové budovy vypadl klavír i s klavíristou, který po celou dobu pádu hrál zděšené A. O $k$ pater pod tímto oknem odpočíval nebohý umývač oken. Jak velké je $k$, jestliže poslední, co umývač slyšel, bylo Ais, tedy tón o půltón vyšší? Rychlost zvuku v daném vzduchu je $347\, \jd{m\cdot s^{-1}}$, výška jednoho patra je $3,1\, \jd{m}$.

Morbidní úlohu navrhl Petr Sýkora.

2. Série 19. Ročníku - P. dechové nástroje

Pokuste se vysvětlit, proč je možné příčnou flétnu „přefouknout“ o oktávu výše (tj. zahrát stejným hmatem i tón s dvojnásobnou frekvencí), zatímco u klarinetu toho dosáhnout nelze.

Staré návrhy.

6. Série 18. Ročníku - E. chyťte foton

Změřte rychlost světla ve vakuu. Provést to můžete libovolným způsobem, použijte třeba i mikrovlnnou troubu.

Co jiného dát jako experiment do roku fyziky.

6. Série 16. Ročníku - 2. moucha a netopýr

Netopýr na lovu letí proti mouše rychlostí $3,14\,\jd{m.s^{-1}}$, moucha letí desetkrát pomaleji. Netopýr vysílá ultrazvukový signál o frekvenci $f_{0}$, který se odráží od mouchy a vrací k lovci. Netopýrova sluchadla jsou nejcitlivější na frekvence blízko $613\,\jd{kHz}$. Určete $f_{0}$. Zvuk jaké frekvenci by moucha slyšela, kdyby slyšela?

4. Série 16. Ročníku - 1. rámus ve vesmíru

 

  • Hustota mezihvězdného prostředí je asi 10 až 10000 částic na metr krychlový. Tvoří ho převážně vodík. Vzdálenost mezi částicemi je tak velká, že se toto prostředí chová jako ideální plyn. Na vás je rozmyslet, zda se v takovém „vakuu“ může šířit zvuk a pokud ano, jaká může být jeho frekvence?
  • Jaká je maximální frekvence zvuku, který se může šířit ve vzduchu za normálních podmínek?

6. Série 14. Ročníku - E. zase domino

Proměřte rychlost padání dominových kostek z problémové úlohy pro různé podmínky. Můžete např. změřit závislost na vzdálenosti, hmotnosti či výšce kostek. Pokud budete řešit i problémovou úlohu, nezapomeňte porovnat vaši teorii s experimentem.

Inspirace problémovou úlohou.

6. Série 14. Ročníku - P. domino

Určitě už jste si někdy hráli s dominem, tedy kvádry postavenými v řadě za sebou, které po shození prvního z nich lavinovitě padají. Pokuste se odhadnout rychlost, kterou se tato vlna šíří, a jak tato rychlost závisí na rozměrech a hmotnosti kvádrů, vzdálenosti kvádrů. Popište podrobně model, který ve svých úvahách použijete, a posuďte, nakolik odpovídá realitě.

Problém, který organizátorům již dlouho vrtal hlavou.

5. Série 14. Ročníku - 3. rozlišení radaru

Mějme radar, který je schopný rozlišit těleso s průměrem 10 km ve vzdálenosti Měsíce. Jak velké těleso je schopen rozlišit ve vzdálenosti Slunce? Jaká je teoretická vzdálenost, do které je radar schopný „vidět“?

Typická úloha Pavola Habudy.

2. Série 14. Ročníku - 4. the wall

Kolmo proti stěně je postavený reproduktor, který vydává zvuk, jehož frekvence rovnoměrně roste v čase. Mezi stěnou a reproduktorem je pozorovatel. Co uslyší?

Zadal a vymyslel Karel Kouřil.

2. Série 14. Ročníku - E. zvuk

Změřte rychlost zvuku ve vzduchu.

Zadal Jan Prokleška.

5. Série 13. Ročníku - 1. porucha sluchu

Jeden z organizátorů FYKOSu si sehnal dva stejné reproduktory, které umístil na louku $4 \,\jd{m}$ od sebe. Zapojil je na jeden magnetofon, ze kterého do nich pustil tón komorní a. Začal se procházet a co se nestalo: V některých místech louky neslyšel skoro nic. Vaším úkolem je nakreslit ve vhodném měřítku obrázek, ve kterém vyznačíte místa, kde organizátor skoro nic neslyšel. Jev vysvětlete.

3. Série 10. Ročníku - 2. dopravní přestupek

Jede si tak jednou pan Doppler po městě a co nevidí. Zastavuje ho vozidlo policie a příslušník povídá: „Pane řidiči, jste si vědom toho, že jste jel na červenou?“

„Nikoliv. Když jsem projížděl kolem semaforu, tak jsem viděl zelenou. Tím jsem si naprosto jist, odvětil pan Doppler.“

„Tak v tom případě vám musím dát pokutu za rychlou jízdu!“

Kolik zaplatil pan Doppler a proč, jsou-li sazby 1 Kč za $1\; \textrm{km}\cdot h^{-1}$ přes povolený limit $60\; \textrm{km}\cdot h^{-1}$ ve městě?

4. Série 9. Ročníku - 1. Pozor, přímý přenos!

Ve velké newyorské koncertní síni Carnegie Hall sedí malý český človíček Honzíček, na programu je Beethovenova sedmá symfonie. Ne každý milovník vážné hudby z naší zemičky má na to, aby slyšel takovýto koncert na vlastní uši, a tak jiný malý český človíček Pepíček (mimochodem blízký přítel našeho hrdiny) sedí hezky doma v Praze na Vinohradech ve svém křesílku s ouškem přitisknutým na rozhlasovém přijímači. Do jaké řady má Honzíček koupený lístek, víte-li, že spolu se svým přítelem Pepíčkem slyší tóny Sedmé ve stejný okamžik?

Pozn.: Pokud postrádáte některé údaje, tak si je vyhledejte; jestli něco nemůžete skutečně zjistit, např. vzdálenost řad v C. Hall, tak si to odhadněte, jsme přece fyzici, ne?

3. Série 9. Ročníku - 2. dálkový průzkum

Zjistit přesné údaje o Merkuru bylo pro astronomy vždy velkým problémem. Není jednoduché změřit pomocí dalekohledu jeho zdánlivý průměr, který nepřesahuje $13''$ a protože na povrchu Merkuru není vidět mnoho podrobností, zůstavala rychlost jeho rotace dlouho neznámá. Od konce minulého století se předpokládalo, že Merkur má takzvanou vázanou rotaci, to znamená, že jedna jeho otočka kolem osy je stejně dlouhá jako doba oběhu kolem Slunce, tedy 88 dní. Tento omyl vyvrátilo teprve v 60. letech radarové pozorování. Dejme tomu, že radioastronomové vyslali v čase $t_{0}=0\;\mathrm{s}$ signál směrem k Merkuru a jeho odraz pozorují od doby $t_{1}=1\,070{,}156\,24\;\mathrm{s}$ do $t_{2}=1\,070{,}188\,79\;\mathrm{s}$. Při dalším měření se soustředili na rudý posuv přijaté vlny. Původní signál měl frekvenci $100\;\textrm{MHz}$ a frekvence jednotlivých složek ozvěny se pohybovala od $f_{1}=99{,}977\,397\,00\;\mathrm{MHz}$ do $f_{2}=99{,}977\,405\,06\;\mathrm{MHz}$. Vypočtěte z těchto údajů (za předpokladu, že sklon rotační osy této planety vůči ekliptice je malý) vzdálenost a rychlost vzdalování Merkuru od observatoře, jeho poloměr, úhlovou rychlost rotace a dobu jedné otočky kolem osy.

6. Série 8. Ročníku - 3. před plechem, za plechem

K oblíbeným položkám v matfyzáckém folkloru patří tento zvyk. Zahlédne-li takové indiviuum dlouhou stěnu z vlnitého plechu (nebo jiného podobně tvarovaného materiálu), postaví se cca. $5\; \textrm{m}$ od ní a silně dupne. Ozve se (kromě obvyklého plesknutí) delší drnčivý zvuk, který postupně mění svou výšku.

Vysvětlete, jak tento zvuk vzniká, a spočtěte, jak se mění jeho frekvence s časem. Jaká je doba, po kterou ji slyší? Tvarování plechu je ukázáno na obrázku.

3. Série 8. Ročníku - 2. kostka

Nalezněte tvar čela vlny na hladině rybníka, do něhož jsme vhodili pravidelný hexaedr (tj. šestistěn, pro neznalé krychle) o hraně $a$ tak, že dopadla na hladinu jednou svou stěnou. Jak bude tato vlnoplocha vypadat ve vzdálenosti $r\gg a$?

4. Série 2. Ročníku - 3. reflektor

figure

Reflektor

Jaký musí být vrcholový úhel kuželového reflektoru, aby se paprsky ze svítícího vlákna v ose kuželu délky $l$ odrazily o stínítko jednou, dvakrát, $n$-krát? Stínítko je dostatečně velké.

3. Série 2. Ročníku - 4. jak hluboká je studna?

Hloubku studny chceme určit s relativní chybou $2\; \%$ tak, že do ní pustíme kámen a měříme dobu, za kterou uslyšíme pád kamene na dno od jeho vypuštění. Při jaké hloubce studny už musíme uvažovat rychlost šíření zvuku?

3. Série 2. Ročníku - E. index lomu

Určete co nejpřesněji index lomu přiloženého plátku umělé hmoty. Uveďte postup a odhadněte přesnost provedeného měření.

2. Série 1. Ročníku - 2. čluny

figure

Pohled na čluny

Obrázek ukazuje dva čluny pohybující se po hladině jezera. Z obálky vln soudíme, že

  • obě lodi plují větší rychlostí, než je rychlost povrchových vln, přičemž loď I pluje rychleji než loď II
  • loď I pluje rychleji než loď II, ale nemusí nutně plout větší rychlostí, než je rychlost povrchových vln
  • ani a), ani b)

1. Série 1. Ročníku - 3. klavír

Předpokládejte, že vlastníte výborný koncertní klavír. Chcete ho nechat naladit. Pozvete nejlepšího ladiče pian. Ten ladí klavír tak, že porovnává zvuk klavíru a etalonu (ladičky). Jak dlouho mu bude trvat perfektní naladění klavíru?

  • zhruba hodinu
  • zhruba den
  • zhruba týden
  • zhruba měsíc
  • nekonečně dlouho

1. Série 1. Ročníku - 4. houkající lokomotiva

Po přímé trati jede houkající lokomotiva rychlostí $v$. Klidová frekvence píšťaly lokomotivy je $f$. Ve vzdálenosti $l$ od trati stojí pozorovatel.

  • Určete závislost slyšené frekvence $f$ na čase (předpokládejte, že v $t = 0$ je lokomotiva nejblíže k pozorovateli).
  • Specielně vyšetřete závislost $f(t)$ na $l$ (vzdálenost pozorovatele).

Poznámka: Předpokládejte, že okolní vzduch je v klidu.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz