Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (65)biofyzika (16)chemie (18)elektrické pole (56)elektrický proud (60)gravitační pole (64)hydromechanika (119)jaderná fyzika (34)kmitání (37)kvantová fyzika (25)magnetické pole (29)matematika (74)mechanika hmotného bodu (205)mechanika plynů (79)mechanika tuhého tělesa (184)molekulová fyzika (58)geometrická optika (64)vlnová optika (45)ostatní (131)relativistická fyzika (32)statistická fyzika (22)termodynamika (116)vlnění (40)

elektrické pole

(7 bodů)1. Série 32. Ročníku - 3. nestabilní

Mějme osm bodových nábojů (každý o velikosti $q$) umístěných ve vrcholech krychle. Určete velikost bodového náboje $q_0$, který musíme umístit do středu krychle, aby byly všechny body v rovnováze. Bude rovnováha stabilní?

Matěj chtěl zadat příklad, který nespočítal ani profesor.

(5 bodů)6. Série 29. Ročníku - 5. závody částic

V homogenním magnetickém poli $\textbf{B}=(0,0,B_{0})$, $B_{0}=5\cdot 10^{-5} \; \mathrm{T}$ obíhají po kružnicích v rovině $xy$ dvě částice, elektron s hmotností $m_{e}=9,\! 1\cdot 10^{-31}\;\mathrm{kg}$ a nábojem $-e=-1,\! 6 \cdot 10^{-19}\; \mathrm{C}$ a alfa částice s hmotností $m_\mathrm{He}=6,\! 6 \cdot 10^{-27}\;\mathrm{kg}$ a nábojem $2e$. Poloměr trajektorie elektronu je $r_{e}=2\;\mathrm{cm}$, poloměr trajektorie alfa částice je $r_\mathrm{He}=200\;\mathrm{m}$. V jednom okamžiku zapneme slabé homogenní elektrické pole $\textbf{E}=(0,0,E_{0})$, $E_{0}=5\cdot 10^{-5}\;\mathrm{V} \cdot \mathrm{m}^{-1}$. Určete, jaké dráhy $s_{e}$ a $s_\mathrm{He}$ urazí každá z částic za čas $t=1\;\mathrm{s}$ od zapnutí elektrického pole. Předpokládejte, že částice jsou dostatečně vzdálené a nevyzařují.

Mirek se učil na zkoušku z plazmatu.

(2 body)4. Série 29. Ročníku - 2. mozek v mikrovlnce

Jak daleko musí být člověk od BTS, aby působení jejího vysílání na mozek bylo srovnatelné s vysíláním mobilu přímo u hlavy? Předpokládejte, že BTS vysílá rovnoměrně do poloprostoru a má vysílací výkon $400\; \mathrm{W}$. Vysílací výkon mobilu je $1\; \mathrm{W}$.

(2 body)2. Série 27. Ročníku - 2. létavé dřevo

Máme dřevěnou kuličku ve výšce $h=1\;\mathrm{m}$ nad Zemí o poloměru $R_{Z}=6\,378\;\mathrm{km}$ a hmotnosti $M_{Z}=5,\!97\cdot 10^{24}\;\mathrm{kg}$. Kulička má poloměr $r=1\;\mathrm{cm}$ a je ze dřeva o hustotě $ρ=550\;\mathrm{kg}\cdot \mathrm{m}^{-3}$. Předpokládejte, že Země má náboj $Q=5\;\mathrm{C}$. Jaký náboj $q$ by musela mít kulička, aby se mohla vznášet nad Zemí? Jak tento výsledek závisí na výšce $h?$

Karel přemýšlel, co zadat jednoduchého.

(5 bodů)1. Série 27. Ročníku - 5. korálek

figure

Bodový korálek o hmotnosti $m$ a s nábojem $q$ se pohybuje v rovné trubce bez tření. Trubka se nachází ve středu mezi dvěma nabitými koulemi, každá s nábojem $Q=-q$. Vzdálenost koulí je 2$a$. Uvažujte elektrostatické působení a najděte frekvenci malých kmitů korálku okolo rovnovážné polohy.

Nápověda: Uvědomte si, že velikost síly se při malých výchylkách mění pouze zanedbatelně.

Radomír se kutálel v trubce.

(5 bodů)1. Série 27. Ročníku - P. rychlost světa

Jaký by byl svět, ve kterém by byly stejné hodnoty fundamentálních fyzikálních konstant, jenom rychlost světla by byla pouze $c=1000\;\mathrm{km}\cdot \mathrm{h^{-1}}$? Jaký by byl takový svět pro život na Zemi, život lidí? A bylo by vůbec možné, aby v takovém světě existovali lidé?

Karel zase navrhl neřešitelnou úlohu.

(8 bodů)4. Série 26. Ročníku - E. nástěnkový boj brček

Když si vezmete běžné plastové brčko (slámku) a otřete ho kapesníkem, dokážete brčko nabít tak, že bude dokonce držet na některých stěnách a nástěnkách díky svému náboji. Vysvětlete jev a odhadněte, jak velký náboj dokážete na brčku vytvořit.

Nápověda: Hodilo by se použít dvě brčka.

Karlovi došly magnety a připínáčky.

(6 bodů)3. Série 26. Ročníku - S. tokamak

 

  • Spočtěte specifický odpor vodíkového plazmatu při teplotě 1 keV a srovnejte ho s odporem běžně používaných vodičů.
  • Spočtěte, jak velký proud plazmatu je zapotřebí k vytvoření dostatečně silného poloidálního magnetického pole v tokamaku, který má hlavní poloměr 0,5 m. Toroidální pole vytváří cívky navinuté okolo torusu s hustotou vinutí 20 závitů na metr, kterými prochází proud 40 kA. Poloidální pole by mělo mít velikost zhruba 1 ⁄ 10 pole toroidálního.
  • Pokuste se libovolným nápaditým způsobem vytvořit fyzický model siločar v tokamaku, tento model nafoťte a pošlete spolu s řešením.

(2 body)5. Série 25. Ročníku - 2. elektrická rovnováha

figure

Na obrázku je nevodivá tyč délky $d$ zanedbatelné hmotnosti, otočná kolem svého středu. Na obou koncích tyče jsou připevněny malé vodivé koule zanedbatelných hmotností s kladnými náboji $Q_{1}$ a 2$Q_{1}$. Tyč je vyvážena závažím o tíze $G$ podle obrázku. Ve vzdálenosti $h$ přímo pod každou z koulí je pevně umístěna koule s kladným nábojem $Q$.

  • Určete vzdálenost $x$, pro niž je tyč vodorovná a je v rovnováze.
  • Pro jakou hodnotu $h$ bude tyč v rovnováze a nebude přitom vůbec zatěžovat čep, na němž je upevněna?

Ze sbírek vyhoupala Dominika.

(5 bodů)3. Série 25. Ročníku - 5. zemnící roviny

Mějme dvě nekonečně velké vodivé roviny, které jsou obě uzemněné a vzdálené od sebe $l$. Mezi nimi je umístěn bodový náboj velikosti $q$ ve vzdálenosti $x$ od horní roviny. Určete náboj indukovaný na spodní rovině.

Janapka.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz