Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (65)biofyzika (16)chemie (18)elektrické pole (56)elektrický proud (60)gravitační pole (64)hydromechanika (119)jaderná fyzika (34)kmitání (37)kvantová fyzika (25)magnetické pole (29)matematika (74)mechanika hmotného bodu (205)mechanika plynů (79)mechanika tuhého tělesa (184)molekulová fyzika (58)geometrická optika (64)vlnová optika (45)ostatní (131)relativistická fyzika (32)statistická fyzika (22)termodynamika (116)vlnění (40)

geometrická optika

(6 bodů)2. Série 32. Ročníku - 3. fyzikální trofej

Danka vyhrála závod v derivování a za odměnu dostala sošku vyrobenou z průhledného materiálu ve tvaru hranolu se čtvercovou podstavou o hraně $a = 5$ cm a výšce $h \leq a$. Ať se dívá, jak se dívá, čelní stěnou nikdy nevidí přes boční stěny skrze trofej, vždy vidí pouze odražené paprsky. Jaký může mít materiál trofeje index lomu? Hranol je umístěn ve vzduchu.

Michala K. okouzlila soška.

(3 body)5. Série 31. Ročníku - 2. paprsky smrti na skle

figure

Lom paprsků

Na skleněnou desku s absolutním indexem lomu $n = 1,5$ dopadá světelný paprsek. Stanovte jeho úhel dopadu $\alpha _1$, jestliže paprsek odražený od rozhraní svírá s lomeným paprskem úhel $60 \mathrm{\dg }$. Deska je uložena ve vzduchu.

Danka ráda řeší více problémů najednou.

(3 body)2. Série 31. Ročníku - 2. irradiace solární elektrárny

Solární konstanta, či správněji solární irradiace, je tok energie přicházející ze Slunce ve vzdálenosti Země od Slunce. Nejde o konstantu, ale uvažujme, že má hodnotu $P = 1\,370\,\mathrm{W\cdot m^{-2}}$. Uvažujme, že Země obíhá Slunce po kružnici a sklon zemské osy vůči kolmici k její oběžné rovině je $23{,}5\mathrm{\dg}$. Jaký bude maximální výkon zachycený solárním panelem o ploše $S= 1\,\mathrm{m^2}$ o letním a zimním slunovratu, pokud panel leží na rovném povrchu Země v Praze? Uvažujte, že ani atmosféra ani budovy nijak neovlivní měření.

Karel si pustil Crash Course Astronomy.

(6 bodů)2. Série 31. Ročníku - 3. pozorovací

Jakou část povrchu kulové planety není možné vidět ze stacionární oběžné dráhy planety (taková dráha, že se obíhající objekt nachází stále nad stejným bodem na planetě), která má hustotu $\rho $ a periodu rotace $T$?

Filip prechádzal nevidené úlohy z náboja.

(3 body)1. Série 31. Ročníku - 2. zálohovací NAS(A)

Uvažujte optický switch (propustnost $10 \mathrm{Gb s^{-1}}$), jehož výstup (po patřičném zesílení) použijete k ozáření Měsíce. Díky zrcátkům zanechaným na jeho povrchu z dob projektu Apollo se signál vrátí zpět a přivedete jej (po patřičném zesílení) na vstup switche. Pokud zajistíme spolehlivé fungování switche, budou jednou vyslaná data v systému „obíhat“ trvale, takže jsme získali paměť. Jaká je její maximální kapacita? Dobu zpracování ve switchi a velikost datových hlaviček zanedbejte.

Michal zkombinoval pingf s a Laufzeitspeicher.

(8 bodů)5. Série 30. Ročníku - P. sklíčka

Popište zobrazovací soustavy mikroskop (složený ze 2 spojek) a Keplerův dalekohled. Vysvětlete rozdíl ve funkci a konstrukci mikroskopu a dalekohledu a načrtněte průchod paprsků. Jak se dá smysluplně definovat zvětšení pro dané optické prvky? Odvoďte pro zvětšení konkrétní vzorce.

Kuba konečně pochopil, jak to všechno funguje!

(9 bodů)4. Série 30. Ročníku - 5. divná atmosféra

Zažili jste už někdy takovou divnou atmosféru? Do určité výšky je v ní rychlost šíření světla konstantní $v_{0}$ a od určité hranice se rychlost šíření světla začne lineárně zvětšovat podle vztahu $v(Δh)=v_{0}+kΔh$. V jednom místě, právě ve výšce, kde se začala měnit rychlost světla, vyšleme světelné paprsky pod všemi možnými úhly směrem nahoru. Ukažte, že se budou všechny paprsky pohybovat po částech kružnic a určete poloměry těchto kružnic. Také určete vzdálenost od místa vypuštění paprsků, kde se paprsky vrátí do původní výšky.

Jakub chce vedieť, aké by to bolo plávať pod ľadom.

(2 body)6. Série 29. Ročníku - 2. dioptrická

Pikošova kamarádka nosí brýle. Když si je nasadí, její oči se zdají menší. Je krátkozraká či dalekozraká? Svou odpověď dobře zdůvodněte.

Pikoš se jí zadíval hluboko do očí.

(5 bodů)2. Série 29. Ročníku - 4. svítíme si na zrcadla

Máme optickou soustavu tvořenou třemi polopropustnými zrcadly v jedné ose za sebou. Každé zrcadlo by samo o sobě polovinu dopadajícího záření propustilo a polovinu odrazilo. Jaká část světla celkově projde naší optickou soustavou?

Bonus: Vyřešte úlohu pro $n$ zrcadel.

Karel se prohlížel v zrcadle.

(4 body)1. Série 29. Ročníku - 4. čočka smrti

Představte si, že kolem Slunce obíhá po kruhové dráze spojná čočka o průměru rovném slunečnímu průměru, jejíž ohnisko obíhá s dostatečnou přesností po oběžné dráze Země. Určete, jak moc čočka Zemi sežehne během jednoho svého oběhu (tj. kolik jí předá sluneční energie), bude-li obíhat kolem Slunce ve vzdálenosti Merkuru, a porovnejte tento výsledek se stavem, kdy bude obíhat ve vzdálenosti Venuše.

Bonus: Uvažujte navíc zatmění, které čočka při oběhu způsobí.

Mirek chtěl použít čočku k fokusaci paprsků ze Slunce během zatmění.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz