Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (60)biofyzika (15)chemie (16)elektrické pole (54)elektrický proud (56)gravitační pole (56)hydromechanika (103)jaderná fyzika (31)kmitání (35)kvantová fyzika (21)magnetické pole (27)matematika (73)mechanika hmotného bodu (192)mechanika plynů (75)mechanika tuhého tělesa (165)molekulová fyzika (45)geometrická optika (62)vlnová optika (42)ostatní (125)relativistická fyzika (31)statistická fyzika (21)termodynamika (106)vlnění (38)

(3 body)5. Série 31. Ročníku - 2. paprsky smrti na skle

figure

Lom paprsků

Na skleněnou desku s absolutním indexem lomu $n = 1,5$ dopadá světelný paprsek. Stanovte jeho úhel dopadu $\alpha _1$, jestliže paprsek odražený od rozhraní svírá s lomeným paprskem úhel $60 \mathrm{\dg }$. Deska je uložena ve vzduchu.

Danka ráda řeší více problémů najednou.

(3 body)2. Série 31. Ročníku - 2. irradiace solární elektrárny

Solární konstanta, či správněji solární irradiace, je tok energie přicházející ze Slunce ve vzdálenosti Země od Slunce. Nejde o konstantu, ale uvažujme, že má hodnotu $P = 1\,370\,\mathrm{W\cdot m^{-2}}$. Uvažujme, že Země obíhá Slunce po kružnici a sklon zemské osy vůči kolmici k její oběžné rovině je $23{,}5\mathrm{\dg}$. Jaký bude maximální výkon zachycený solárním panelem o ploše $S= 1\,\mathrm{m^2}$ o letním a zimním slunovratu, pokud panel leží na rovném povrchu Země v Praze? Uvažujte, že ani atmosféra ani budovy nijak neovlivní měření.

Karel si pustil Crash Course Astronomy.

(6 bodů)2. Série 31. Ročníku - 3. pozorovací

Jakou část povrchu kulové planety není možné vidět ze stacionární oběžné dráhy planety (taková dráha, že se obíhající objekt nachází stále nad stejným bodem na planetě), která má hustotu $\rho $ a periodu rotace $T$?

Filip prechádzal nevidené úlohy z náboja.

(3 body)1. Série 31. Ročníku - 2. zálohovací NAS(A)

Uvažujte optický switch (propustnost $10 \mathrm{Gb s^{-1}}$), jehož výstup (po patřičném zesílení) použijete k ozáření Měsíce. Díky zrcátkům zanechaným na jeho povrchu z dob projektu Apollo se signál vrátí zpět a přivedete jej (po patřičném zesílení) na vstup switche. Pokud zajistíme spolehlivé fungování switche, budou jednou vyslaná data v systému „obíhat“ trvale, takže jsme získali paměť. Jaká je její maximální kapacita? Dobu zpracování ve switchi a velikost datových hlaviček zanedbejte.

Michal zkombinoval pingf s a Laufzeitspeicher.

(8 bodů)5. Série 30. Ročníku - P. sklíčka

Popište zobrazovací soustavy mikroskop (složený ze 2 spojek) a Keplerův dalekohled. Vysvětlete rozdíl ve funkci a konstrukci mikroskopu a dalekohledu a načrtněte průchod paprsků. Jak se dá smysluplně definovat zvětšení pro dané optické prvky? Odvoďte pro zvětšení konkrétní vzorce.

Kuba konečně pochopil, jak to všechno funguje!

(9 bodů)4. Série 30. Ročníku - 5. divná atmosféra

Zažili jste už někdy takovou divnou atmosféru? Do určité výšky je v ní rychlost šíření světla konstantní $v_{0}$ a od určité hranice se rychlost šíření světla začne lineárně zvětšovat podle vztahu $v(Δh)=v_{0}+kΔh$. V jednom místě, právě ve výšce, kde se začala měnit rychlost světla, vyšleme světelné paprsky pod všemi možnými úhly směrem nahoru. Ukažte, že se budou všechny paprsky pohybovat po částech kružnic a určete poloměry těchto kružnic. Také určete vzdálenost od místa vypuštění paprsků, kde se paprsky vrátí do původní výšky.

Jakub chce vedieť, aké by to bolo plávať pod ľadom.

(2 body)6. Série 29. Ročníku - 2. dioptrická

Pikošova kamarádka nosí brýle. Když si je nasadí, její oči se zdají menší. Je krátkozraká či dalekozraká? Svou odpověď dobře zdůvodněte.

Pikoš se jí zadíval hluboko do očí.

(5 bodů)2. Série 29. Ročníku - 4. svítíme si na zrcadla

Máme optickou soustavu tvořenou třemi polopropustnými zrcadly v jedné ose za sebou. Každé zrcadlo by samo o sobě polovinu dopadajícího záření propustilo a polovinu odrazilo. Jaká část světla celkově projde naší optickou soustavou?

Bonus: Vyřešte úlohu pro $n$ zrcadel.

Karel se prohlížel v zrcadle.

(4 body)1. Série 29. Ročníku - 4. čočka smrti

Představte si, že kolem Slunce obíhá po kruhové dráze spojná čočka o průměru rovném slunečnímu průměru, jejíž ohnisko obíhá s dostatečnou přesností po oběžné dráze Země. Určete, jak moc čočka Zemi sežehne během jednoho svého oběhu (tj. kolik jí předá sluneční energie), bude-li obíhat kolem Slunce ve vzdálenosti Merkuru, a porovnejte tento výsledek se stavem, kdy bude obíhat ve vzdálenosti Venuše.

Bonus: Uvažujte navíc zatmění, které čočka při oběhu způsobí.

Mirek chtěl použít čočku k fokusaci paprsků ze Slunce během zatmění.

(5 bodů)5. Série 28. Ročníku - 5. plavala čočka po vodě

Na hladině vody plove tenká bikonkávní (dvojvypuklá) čočka z lehkého materiálu. Poloměry křivosti obou povrchů jsou $R=20\;\mathrm{cm}$. Určete vzdálenost mezi obrazovým a předmětovým ohniskem čočky, jestliže index lomu vzduchu nad čočkou je $n_{a}=1$, index lomu materiálu čočky je $n_{l}=1.5$ a index lomu vody je $n_{w}=1.3$.

Bonus: Předpokládejte, že se jedná o čočku tloušťky $T=3\;\mathrm{cm}$, uvnitř níž je symetricky umístěna vzduchová dutina tvaru bikonkávní čočky s poloměry křivosti $r=50\;\mathrm{cm}$ a tloušťkou $t=1\;\mathrm{cm}$.

Mirek nezapomněl na všemi oblíbenou optiku.

(5 bodů)1. Série 28. Ročníku - P. Měsíc z Marsu

Může být někdy vidět Měsíc z Marsu pouhým okem? Svou odpověď podpořte náležitými výpočty.

Kuba chtěl být stručný.

(2 body)2. Série 25. Ročníku - 1. chromohrátky

Jak by vypadala duha, kdyby místo deště ze sladké vody pršel třeba olej, kyselina sírová nebo sklo?

Dominika viděla duhu.

(2 body)2. Série 25. Ročníku - 2. zelený skřítek

Co uvidí člověk, když si stoupne na konec duhy?

Dominika se zadívala do duhy.

(8 bodů)2. Série 25. Ročníku - E. čočkování

V obálce jste spolu se zadáním dostali i dvě čočky. Vaším úkolem je změřit jejich parametry - druh a ohniskovou vzdálenost.

Poznámka: Pokud nejste stávající řešitelé FYKOSu, ale máte zájem se jimi stát, pak neváhejte a objednejte si čočky až domů. A to s dostatečným předstihem, aby vám stihly dojít včas. Objednávejte na emailu <tt>cocky@fykos.cz</tt>.

Karel vykradl katedru didaktiky fyziky.

1. Série 24. Ročníku - 2. káča bez čerta

Jakub má u babičky káču, na jejíž horní ploše je nakreslená spirála. Káču roztočíme a díváme se na ní shora. Jaké obrazce pozorujeme a proč?

6. Série 23. Ročníku - E. kapička

V této úloze budeme zkoumat kapičku vody jakožto optickou čočku. Nanesete-li kapičku vody na nějaký tenkou skleněnou nebo průhlednou umělohmotnou destičku, dostanete improvizovanou lupu – spojnou čočku. Zkoumejte ohniskovou vzdálenost a maximální zvětšení „kapkové lupy“ v závislosti na jejích rozměrech a porovnejte s teorií. Všimněte si různých zobrazovacích vad kapky. Speciálně prozkoumejte, co se děje, když naší lupu přiblížíme např. k barevnému displeji počítače.

kapky dostal Mára

5. Série 22. Ročníku - 2. bitva o Británii

K odhalování nalétávajících bombardérů se používají silné světlomety s úzkým paprskem světla. Jaká bude jeho odchylka od původního směru v závislosti na úhlu natočení zdroje po průchodu atmosférou? Uvažujte, že hodnota indexu lomu s výškou lineárně klesá.

na schůzku donesl Honza Jelínek

5. Série 22. Ročníku - 4. internetová

Mějme rovné optické vlákno. Světelný signál do něj vstupující může mít odchylku od přímého směru až $α$. Jak nejméně dlouhá musí být časová délka jednoho pulzu, aby šlo určit, zda byl vyslán bit 1, nebo 0, tj. aby aspoň krátký časový úsek byla síla signálu minimální nebo maximální. Délka vlákna je $d$.

na schůzku donesl Honza Jelínek

4. Série 22. Ročníku - 1. Kyklopovo zrcadlo

Zkuste vypočítat, jaký tvar by mělo mít zrcadlo, tak, aby se v něm kyklopova hlava jevila jako čtverec. Kyklop má hlavu ve tvaru koule s okem uprostřed.

Při pohledu do zrcadla uviděl Mára.

2. Série 22. Ročníku - 1. duhová energie

Kde a kdy na Zemi nelze vidět duhu?

na schůzce vypotil Aleš

1. Série 22. Ročníku - 4. praktická motoristická

Na nepřehledných křižovatkách či v ostrých zatáčkách někdy bývá vypuklé zrcadlo. Snadno si všimneme, že zrcadlo zkresluje jak vzdálenost, tak i rychlost přijíždějících aut. Naši vzdálenost od zrcadla označíme $d$, vzdálenost přijíždějícího auta od zrcadla $L$, jeho skutečnou rychlost $v$ a poloměr křivosti zrcadla $R$.

Na základě toho, co vidíme v zrcadle, určete, jak daleko se nám přijíždějící auto jeví? Jakou zdánlivou rychlostí se přibližuje? A jak se liší skutečná doba, za kterou přijíždějící auto vjede do křižovatky, od doby, kterou odhadneme z jeho zdánlivé vzdálenosti a zdánlivé rychlosti? Zvolte si rozumné hodnoty parametrů a rozhodněte, zda může být tento rozdíl dob nebezpečný.

Při cestě na soustředění zažil Marek Scholz.

4. Série 21. Ročníku - 4. zachraňte ledvinu

ÚOOZ zjistil, že mafie disponuje mobilními válečnými lasery, které jsou všechny řízeny z centrály v horském pohraničním sídle Obernieredorf, vzdáleném od zbraní maximálně $50\,\jd{ km}$ (ve větší vzdálenosti je signál už slabý a nespolehlivý). Z centrály sledují dění v podsvětí v Karlových Varech, na které všechny lasery míří, aby udeřily v pravý čas.

Pomozte nevinným obyvatelům Karlových Varů nalézt vhodný tvar, příp. i umístění spojité zrcadlové plochy, která by pokud možno všechny laserové paprsky odrazila nejlépe na řídící centrálu! Problém můžete řešit v rovině, ale zejména oceníme prostorové řešení, pokud existuje. Samozřejmě je požadován důkaz, aby Karlovarští peníze neinvestovali zbytečně.

K oprášení znalostí a dovedností z geometrie zadal Pavel Brom.

6. Série 20. Ročníku - 2. podivná atmosféra

Okolo planety o poloměru $R$ se nachází atmosféra, jejíž index lomu se mění s výškou podle vztahu $n=n_{0}-αh$. Zjistěte, v jaké výšce $h$ nad povrchem planety se světelný paprsek vyslaný tečně k povrchu bude pohybovat po kružnici okolo planety.

Nepoužitá úloha z archivu.

4. Série 20. Ročníku - 2. švestkové víno v číně

figure
figure
figure
figure

V oblíbené čínské restauraci na Vinohradech dávají každému hostu k účtu jako pozornost švestkové víno. Nápoj nalévají do malých keramických mističek s dvojitým dnem (viz obr. 1). Horní dno je skleněné a je pod ním vidět obrázek sedící číňanky (viz obr. 2). Po vypití vína obrázek číňanky zmizí (viz obr. 3). Podrobně vysvětlete, proč se tak stane. Prázdná mistička s vypouklým skleněným dnem je vyfocena na obrázku 4.

Vymyslel Honza po několikáté návštěvě zmíněné restaurace.

6. Série 19. Ročníku - 4. sluneční prasátko

Za slunečných dní je oblíbenou zábavou vrhat obdélníkovým zrcátkem sluneční prasátka. Možná jste si všimli, že někdy má prasátko lichoběžníkový tvar a jindy tvar elipsy. Za jakých okolností nastává každá varianta? Pokud možno svou podmínku zformulujte kvantitativně.

Našel Matouš v sovětské sbírce.

3. Série 19. Ročníku - 2. nájezd na čočku

Mějme spojku o ohniskové vzdálenosti $f$. Zdroj světla je na ose ve vzdálenosti $a>f$ od čočky, za kterou vzniká jeho obraz. Zdrojem začneme pohybovat určitou rychlostí směrem k čočce. Určete, jak rychle se pohybuje obraz. Rozhodněte, zda tato rychlost může být i nadsvětelná. Bylo by to v rozporu s principy speciální teorie relativity?

Vymyslel Jarda Trnka, když psal studijní text z optiky.

1. Série 18. Ročníku - 4. vodník Děsílko poznává svět

Vodník sedí na dně v čisté klidné vodě svého rybníka a dívá se vzhůru, jeho oči jsou v hloubce $h = 1,5 \;\mathrm{m}$ pod hladinou. Jak se Děsílkovi jeví prostor nad hladinou? Předpokládejte, že index lomu oka je stejný jako index lomu vody.

Úloha ze sbírky prof. Vybírala.

6. Série 17. Ročníku - 2. meotar

Možná jste si všimli, že pod plochou zpětného projektoru (meotar) je skleněná deska se soustřednými kruhovými vrypy pracující jako čočka. Rozhodněte, jak se změní poloha obrazu, tedy jestli se posune směrem k meotaru nebo od meotaru, pokud tuto čočku odebereme. Jako bonus můžete vymyslet, na jakém principu skleněná deska s vrypy funguje.

Vymyslel Pavel Augustinský na přednášce QFT.

2. Série 16. Ročníku - 1. ztraceni v temnotě

Jeníček a Mařenka, zabráni do závažné diskuze nad zajímavým fyzikálním problémem, zbloudili v temném hvozdě. A tak, ve snaze nalézt východisko ze zoufalé situace, rozhodl se Jeníček vylézt na statný smrk, v naději že svým ostřížím zrakem zahlédne spásný záblesk světla. Jak nejdále od této dřeviny by se muselo nacházet nechvalně proslulé obydlí ještě nechvalněji proslulé okultistky a gurmánky Jagy Babové, aby Jeníček získal falešnou naději na záchranu v důsledku osvícení 100 W žárovkou svítící v obývacím pokoji výše zmíněného domu?

6. Série 15. Ročníku - P. chromatická vada

Mějme dvě identické skleněné čočky s ohniskovou vzdáleností $f$ (pro určitou střední vlnovou délku). Do jaké vzdálenosti je třeba dát tyto čočky, aby výsledná optická soustava měla co nejlépe kompenzovanou chromatickou vadu (tzn. že různě barevné světlo se zobrazuje do různých míst). Jak velkou ohniskovou vzdálenost bude výsledná soustava mít?

5. Série 15. Ročníku - 1. zrcadla

Mějme dvě rovinná zrcadla svírající úhel $\alpha$. Jak máme nasměrovat paprsek, aby se od nich co nejvíckrát odrazil?

Ze starých sbírek vyhrabala Lenka.

4. Série 15. Ročníku - 1. fľak z šošovky

Mějme čočku o průměru $D$ a ohniskové vzdálenosti $f$ zasazenou ve stěně. Ve vzdálenosti $r$ od stěny a $y$ od optické osy máme bodový zdroj světla, který vyzařuje izotropně. Za čočkou máme ve vzdálenosti $l$ stínítko. A nás by zajímalo, kam dopadne světlo ze zdroje, případně i průběh intenzity na stínítku. (Neuvažujte zobrazovací vady čočky a vlnové vlastnosti světla.)

Vymyslel Miro Kladiva.

2. Série 15. Ročníku - 3. fotografování

Při fotografování běžným fotoaparátem nelze dokonale zaostřit na všechny objekty. Ostře se zobrazí pouze body ležící v rovine kolmé na osu objektivu, na kterou je aparát zaostřen. Co se ale stane, když sklopíme ve foťáku film (vůči objektivu)? Kde pak budou body, které se zobrazí ostře? Lze toho nějak prakticky využít?

Cestou vlakem do Brna napadlo Honzu Houšťka.

1. Série 15. Ročníku - 4. hranol

Mějme pravidelný trojboký hranol o indexu lomu $n$. Na jednu jeho stěnu dopadá paprsek světla a vychází druhou stěnou. Spočtěte úlel odchýlení paprsku $\delta$ paprsku od původního směru v závislosti na natočení hranolu. Kdy bude $\delta$ maximální?

Úlohu zadali Lenka a Honza.

1. Série 15. Ročníku - P. černá tělesa

Mějme dvě dokonale černá tělesa. První z nich má teplotu $T$. Na jakou nejvyšší teplotu lze zahřát druhé z nich pomocí spojky o ohniskové vzdálenosti $f?$

Tento problém všem organizátorům již dlouho vrtal hlavou.

6. Série 14. Ročníku - 3. galaxie

Začátkem století existoval kosmologický model vesmíru, podle kterého byl vesmír homogenní (v každém místě stejný) a izotropní (v každém směru stejný). Takový vesmír v sobě zahrnoval rovnoměrně rozmístěné galaxie. Předpokládejme, že všechny galaxie jsou co do množství vyzařovaného světla stejné. Spočtěte, kolikrát více galaxií uvidíme, jestliže se místo pouhým okem budeme koukat na oblohu triedrem, kterým lze pozorovat objekty s magnitudou až 8,5.

Magnitudou se v astronomii měří jasnost objektu. Čím větší magnituda, tím slabší objekt vidíme. Slunce má −27 magnitud, Měsíc v úplňku $-13^{mag}$, nejjasnější hvězdy $0^{mag}$ a nejslabší hvězdy viditelné pouhým okem mají 6 magnitud. Pomoci vám může Pogsonova rovnice, která porovnává magnitudy a pozorované intenzity dvou objektů:

$$m_{1}-m_{2}=-2,5\log{\frac{I_{1}}{I_{2}}}$$

Zamyslete se nad tím, jak se změní řešení, když budou galaxie vyzařovat různá množství světla.

Vymyslel Pavol Habuda.

5. Série 14. Ročníku - 1. ošklivá sonda

Představte si rovinný povrch nějakého materiálu, zaveďme souřadnou soustavu tak, že povrch splývá s rovinou $z=0$. Každý bod povrchu popišme odrazivostí $R$, což je poměr odražené a dopadající intenzity záření. Víme, že ve směru osy $x$ je $R$ konstantní a ve směru osy $y$ je $R(y)$ periodickou funkcí s periodou $P$. Máme k dispozici sondu, která svítí na povrch a zpětně snímá odraženou intenzitu. Můžeme s ní pohybovat ve směru osy $y$. Sonda však není nekonečně „jemná“, svazek nemůžeme zaostřit do jednoho bodu, vždy budeme mít stopu o nenulové šířce $D$. Sonda tedy snímá průměr odražené intenzity z oblasti, na kterou svítí. Vaším úkolem je napsat, jak pomocí takové sondy zjistit periodu odrazivosti $P$. Lze to pro všechny rozměry sondy?

Úloha ze života Jirky Franty.

5. Série 14. Ročníku - P. upíři

Fyzikálně zdůvodněte, proč není upír vidět v zrcadle, a taktéž navrhněte vynálezy, které by této skutečnosti mohly využít.

Návrh Lenky Zdeborové podle časopisu Školská fyzika.

4. Série 14. Ročníku - E. změřte ho!

Ledová královna žije v říši, kde je všechno kromě lidí, živočichů, rostlin a několika málo dalších věcí z ledu. Chudinka královna zjistila, že potřebuje nové brýle. Jenže její dvorní brusič brýlí umí jenom brýle ze skla a snad by si vzpomněl, jak je udělat z ledu, ale potřeboval by na to znát jeho index lomu. A jelikož všechny MF tabulky v království jsou z ledu, nejde z nich nic přečíst, a tak mu nezbývá, než ho změřit, jenže neví jak. A tak vás prosí o pomoc. Poraďte mu a pro jistotu i danou veličinu změřte sami, neboť on je nešika a nic jiného než brousit brýle neumí.

Úlohu navrhl Milan Berta, pohádku vymyslela Lenka Zdeborová.

2. Série 14. Ročníku - 1. lampa na hladině

Jdete večer kolem řeky šířky $L$. Na protějším břehu stojí lampa ve výšce $h$ nad hladinou řeky. Když se podíváte na hladinu, uvidíte na vodě obraz lampy. Je-li hladina rozčeřená, tento obraz se „rozmaže“. Určete úhlovou šířku a délku pod jakou tento útvar vidíte. Předpokládejte, že vaše oči jsou ve stejné výšce nad hladinou jako lampa. Zčeřenou hladinou rozumíme vlnky s maximálním náklonem $\alpha$ ve všech směrech a výškou zanedbatelnou vůči $h$.

Proseminář z optiky ve třetím semestru MFF.

1. Série 14. Ročníku - 3. sluneční paradox

Hlavně večer a ráno můžeme někdy pozorovat sluneční paprsky jdoucí skrz mezery v mracích. Vidíme, že se tyto paprsky rozbíhají. Kdybychom si v jejich myšleném průsečíku představili Slunce, vyšlo by nám, že je několikrát (2–5) dále než mraky, tzn. řádově deset kilometrů nad Zemí. Tak proč nám všichni tvrdí, že Slunce je od Země 150 mil. km?

Lenka Zdeborová se inspirovala článkem z loňského ročníku časopisu Školská fyzika.

1. Série 14. Ročníku - P. jedna paní povídala

Jeden krátkozraký kamarád mi říkal, že když si z prstů před okem utvoří malý otvor, tak vidí věci kolem sebe ostřeji než normálně. Je na tom něco pravdy nebo si vymýšlí? Svůj názor fyzikálně zdůvodněte.

Úloha z krátkozrakého života Lenky Zdeborové.

6. Série 12. Ročníku - S. optická vlákna

  • Jak velká je vstupní numerická apertura u vlákna s gradientním indexem lomu $n=1,452$ a relativní změnou indexu lomu $Δ=0,01?$
  • Jak dlouhý signál dostaneme na výstupu z optického vlákna s parametry z části a) o délce $100\,\jd {km}$, jestliže dáme na vstup signál dlouhý

$1\,\jd {µs}$? K výpočtům použijte nastíněného geometrického modelu.

  • Jakou maximální přenosovou kapacitu (v bytech/s) můžeme na tomto vlákně provozovat? Předpokládejte, že přenesení jednoho bitu znamená přenést jeden impuls.

3. Série 12. Ročníku - 2. a zase ta čočka!

Tenkou ploskodutou čočku s poloměrem křivosti lámavé plochy $R$ postupně ponořujeme do vody (viz obrázek). Nalezněte závislost optické mohutnosti takovéto soustavy na hloubce ponoření čočky. Znáte index lomu skla, vody a vzduchu při atmosférickém tlaku. Závislost indexu lomu vzduchu na tlaku je lineární.

3. Série 12. Ročníku - S. plachetnice a světlo

 

  • Jaké zrychlení bude mít sluneční plachetnice o hmotnosti $m=10\,\jd{t}$ a velikosti plachet $S = 1000\,\jd{ m^{2}}$ nedaleko Země, kde je světelný výkon Slunce (solární konstanta) $k=1330\,\jd{W \cdot m^{-2}}$? Za jak dlouho by taková plachetnice dorazila od dráhy Země k dráze Marsu, pokud bychom ji vypustili s nulovou rychlostí? Předpokládejte, že velikost solární konstanty je v prostoru mezi Zemí a Marsem konstantní, zanedbejte gravitační vlivy všech těles. Poloměr dráhy Země je $1\,\jd{ AU}$, poloměr dráhy Marsu je $1,523\,\jd{ AU}$. $\jd{AU}$ je astronomická jednotka a její velikost je $1\,\jd{ AU}=1,495 978 70 \cdot 10^{11} \jd{m}$.

Velikost solární konstanty samozřejmě závisí na vzdálenosti od Slunce. Jaká je její velikost na Marsu?

  • Vysvětlete proč je výhodnější vyrábět plachty sluneční plachetnice z materiálu, který má blízko k zrcadlovému lesku, než z matného materiálu.
  • Jaká je intenzita elektrického pole (ve $\jd{V\cdot m^{-1}}$) v laserovém svazku s intenzitou $150\,\jd{ kW\cdot cm^{2}}$? Jak velká by musela být intenzita svazku, aby docházelo k ionizaci vzduchu?
  • Jak by se musel upravit argument funkce kosinus, aby vztah

$$\textbf{E}(\textbf{r},t) = \textbf{E}_{0} \cos(ωt – k r + φ)$$

nepředstavoval rovinnou, ale kulovou vlnu. Kulová vlna je vlna, šířící se z bodového zdroje, asi jako když hodíte kámen do rybníka. Roviny konstantní fáze u kulové vlny jsou soustředné koule se středem ve zdroji.

2. Série 12. Ročníku - 4. čočka ve vodě

figure

Tenká, ploskodutá čočka je ponořená do vody ve vodorovné poloze dutou stranou dolů, jak ukazuje obrázek. Celková optická mohutnost takto vytvořené optické soustavy je $D=–2,6\;\mathrm{D}$. Určete poloměr křivosti skleněné čočky.

$(n_{1}=1,5; n_{2}=1,33; n_{3}=1)$

2. Série 12. Ročníku - S. spektra, spektrografy a koutové odražeče

figure
figure

  • Jak velký obraz Slunce se vytváří na štěrbině Ondřejovského spektrografu?
  • Pokuste se přijít na důvod, proč se pro napájení spektrografu používají dvě zrcadla (coelostat), a nikoli jen jedno zrcadlo (heliostat).
  • Jak dlouho čekali pozorovatelé na Zemi, než se jim vrátil signál vyslaný k Měsíci, který se na Měsíci odrazil od koutového odražeče?
  • Dokažte, že tři na sebe navzájem kolmá zrcadla, použitá v koutovém odražeči, mají tu výhodnou vlastnost, že paprsek od nich odražený se šíří v přesně opačném směru, než přišel.
  • Při noční jízdě automobilem pozorujeme na krajnici oranžové zářící předměty. Kde se bere energie na jejich „svícení“? Proč řidič nevidí ve zpětném zrcátku stejné svítící předměty?

1. Série 12. Ročníku - S. dalekohledy a čočky

figure
figure
figure
figure

  • Kolikrát slabší hvězdy bude schopen zaznamenat dalekohled VLT, který se staví na La Silla, Chile, než lidské oko? Je vybaven čtyřmi zrcadly, každé má průměr $8\,\jd{ m}$, expoziční doba pořizovaných snímků je $1000\,\jd{ s}$. Lidské oko shromažďuje světlo po dobu asi $0,2\,\jd{ s}$.
  • Vymyslete jednoduchou metodu, kterou rozlišíte spojky od rozptylek s velkými ohniskovými vzdálenostmi ($>20\,\jd{ m}$), tj. že spojky nefungují jako lupa. Jediné pomůcky, které máte, jsou vaše oči, ruce, mozek a okolní zdi.

Nápověda: Sežeňte třeba brýlovou spojku a rozptylku a experimentujte.

3. Série 11. Ročníku - 2. autobus

figure

Při cestě autobusem se vám může přihodit následující podivná věc: Sedíte na zadním sedadle vpravo a díváte se z okna (viz obr. 1). Jelikož je noc, vidíte v něm také odraz digitálních hodin visících nad řidičem. Jede-li autobus pěkně po rovině, mají číslice odražené v okně zanedbatelnou tloušťku (viz obr. 2). Může se ale stát, že vlivem nerovností na vozovce a klepání motoru se okno rozkmitá a číslice se rozmažou tak, že vypadají $1 \,\jd{cm}$ tlusté (viz. obr. 3). S jak velkou amplitudou okno kmitá? Jaká musí být minimální frekvence, abychom neviděli jednotlivé kmity číslic?

2. Série 11. Ročníku - 3. ze života hmyzu

Na skleněné kouli o poloměru $R$ sedí hladový pavouk. Nejraději jí mouchy a zrovna jedna sedí na stejné kouli. Najděte pro mouchu takovou polohu na kouli, aby jí pavouk neviděl. Předpokládejte, že pavouk má oči zhruba v jednom bodě ležícím na kouli, a že moucha je vysoká $h$.

1. Série 11. Ročníku - 1. skleněný schizofrenní válec

figure

Mějme válec, který je slepený ze dvou skleněných polovin o indexech lomu $n_{1}$ a $n_{2}$. Válec se otáčí rovnoměrně kolem své osy. Na válec svítíme světelným paprskem kolmo na jeho osu rotace (viz obr.). Jak se bude pohybovat stopa paprsku po podložce v závislosti na úhlu natočení $φ$ válce, jestliže je vzdálenost podložky od osy rotace $d=1\,\jd{m}$?

4. Série 10. Ročníku - 1. sever

Je to už dávno, co jsme my, organizátoři, chodili na své základní školy. Nicméně si všichni dobře pamatujeme, že jsme se učili, jak pomocí ručičkových hodinek a polohy Slunce na obloze přibližně stanovit sever. Po vás bychom chtěli, abyste nám vysvětlili, jak to funguje, proč to funguje a s jakou přesností (přibližně).

3. Série 10. Ročníku - E. optické vlastnosti vody

Tentokrát je zadání velmi stručné: změřte index lomu obyčejné pitné vody. Současně si přečtěte autorské řešení úlohy I.6 a pokuste se realizovat jen jednu metodu, ale zato co nejprecizněji.

2. Série 10. Ročníku - 1. rohové zrcadlo

figure

Představte si, že stojíte v bodě $B$ na obr. 1 před dvěma zrcadlovými plochami, které jsou na sebe kolmé ($α = 90°$). Kolikrát uvidíte svůj obraz v zrcadlech? Co se stane, dáme-li před jednu stěnu překážku $P$ (např. skříň)? Jak se situace změní, budou-li zrcadla měnit svůj úhel ($α < 90°$), resp. ($α > 90°$)?

2. Série 10. Ročníku - 4. zrcadla, aneb kdo je nejkrásnější

figure

Vypuklé a duté zrcadlo mají stejný poloměr křivosti $R$. Vzdálenost mezi vrcholy zrcadel je $2R$. V jakém bodě na optické ose zrcadel musíme umístit zdroj světla $S$, aby po odraze od vypuklého a dutého zrcadla splýval obraz bodu $S$ se svým vzorem?

2. Série 10. Ročníku - P. dvojčata ve vesmíru

figure

Michal a Karel jsou dvojčata. V zájmu vyššího vědeckého poznání je posadíme každého do jiné kosmické lodi v týž čas $t = 0$ a vystřelíme ze Země $Z$ rychlostmi $\textbf{u}$ a $\textbf{v}$ vstříc hvězdným dálavám. Abychom jim život co nejvíce znepříjemnili, jejich rychlosti svírají úhel $φ$, jak je to vidět na obr. 5. Po čas hvězdného putovaní se jejich rychlosti nemění. V čase $t_{0}$ se Michal, který se zrovna nachází v bodě $M$, rozhodne vyslat zprávu – radiový signál svému sourozenci. Pod jakým úhlem $γ$ vůči svému směru pohybu musí zaměřit signál, aby Karel zprávu obdržel?

Vliv ostatních těles na dráhu lodi a paprsku zanedbejte. Diskutujte též případ, kdy vesmírné lodě nejsou vypuštěny ve stejný čas, ale Michal se vydá do vesmíru o dobu $T$ dříve. Jak se změní výpočet budou-li velikosti rychlosti $\textbf{u}$ a $\textbf{v}$ blízké rychlosti světla $c$?

1. Série 10. Ročníku - E. výše mého domova hvězd se bude dotýkat

První experimentální úloha letošního ročníku je svým zadaní poměrně jednoduchá, poskytuje však velký prostor pro vaši nápaditost a vynalézavost: Změřte výšku vašeho bydliště co nejvíce způsoby a výsledky porovnejte. Nebojte se odvážných nápadů, originalita řešení bude kladně hodnocena. Spočítejte také nebo alespoň odhadněte chyby měření nezapomínajíce na to, že ve fyzice platí: jedno pozorovaní = žádné pozorovaní!

6. Série 9. Ročníku - E. hledání jednoho malého bodu

V této sérii bychom po vás chtěli, abyste se pokusili změřit ohniskovou vzdálenost lupy. Pokud nemáte lupu, poproste třeba svého dědečka, jestli by vám na chvilku nepůjčil brýle na čtení. Nezapomeňte, že brýle mají obvykle každé sklo jinak opticky mohutné.

1. Série 9. Ročníku - 2. polopropustá zrcadla

figure

Mějme dvě polopropustná zrcadla, z nichž každé propouští přibližně $1/5$ světelného toku a zbytek odráží (což je experimentální poznatek). Jestliže vložíme rovnoběžnému svazku světelných paprsků do cesty obě zrcadla kolmo na směr šíření (viz obr. 2), zdálo by se na první pohled, že tato soustava propustí jen $1/25$ dopadajícího světelného toku, ale ve skutečnosti je to o dost více, asi $1/10$. Vysvětlete tento „paradox“!

5. Série 7. Ročníku - 4. odrazy od skla

Inspirací k této úloze byla jízda metrem, ale pokud je vám tento dopravní prostředek poněkud vzdálen, lze si tutéž situaci představit při noční chůzi dlouhým proskleným osvětleným koridorem, kdy okna tvoří boční stěny. Na jednom okně je ve výšce očí vylepen plakát široký 40 cm. Za optimálních podmínek, kdy venku je naprostá tma a okna jsou dokonale vyleštěná, uvidíte tento plakát i v několikanásobném odrazu od okeních tabulí.

Plakát se nachází na stěně protější k té, u které stojíte; jeho bližší okraj je od vás vzdálen 4 m měřeno ve směru chodby. Kolikrát uvidíte (v ideálním případě) na protější tabuli pětipalcový nadpis plakátu (jdoucí od okraje k okraji), aniž by se jeho písmena překrývala? Jak musíte mít dobrý zrak (ve srovnání se čtením novin v půlmetrové vzdálenosti), aby jste všechny tyto odrazy přečetli? A jak se situace změní, postavíte-li se doprostřed? Šířka chodby je 3 m.

4. Série 7. Ročníku - P. čočka

Čočka je věc natolik známá, že si asi každý myslí, že zde již žádné problémy nejsou. Opak je pravdou. Čočky mají spoustu vad a jedna z nich je způsobena závislostí indexu lomu na vlnové délce. V praxi se vyrábějí takové čočky, aby pokud možno lámaly světlo všech vlnových délek stejně. Takové čočky se vyrábějí z více materiálů a požadavkem je, aby několik zadaných vlnových délek prošlo stejně. Vaším úkolem bude navrhnout takovou plosku-vypouklou čočku (plochá je u 1. materiálu).

  • Máte 2 materiály o indexu lomu $n$ a dvě zadané vlnové délky $λ_{1}$ ,$λ_{1}$:
1. materiál 2. materiál
$λ_{1}$ $n_{1,1}$ $n_{1,2}$
$λ_{2}$ $n_{2,1}$ $n_{2,2}$

Z těchto materiálů navrhněte plosko-vypouklou čočku (tj. najděte vhodné poloměry křivosti ploch při daném pořadí materiálů) o optické mohutnosti $D$. Čočka bude ve vzduchu, tj. $n=1$.

  • Jelikož lidské oko je citlivé hlavně na tři barvy (červená, zelená a modrá), je velmi důležitá tato úloha: Máte 3 materiály s indexy lomu
barva tavený křemen Schott K3 Eastman Kodak – 110
červená $1,454$ $1,512$ $1,689$
zelená $1,459$ $1,518$ $1,697$
modrá $1,470$ $1,533$ $1,718$

Nalezněte příslušné poloměry křivosti $r_{1}$, $r_{2}$, $r_{3}$. (Pořadí materiálů je 1., 2., 3. a čočka je plochá u 1.).

  • Pokuste se napsat obecný postup řešení (rovnici a algoritmus řešení) tohoto problému pro $x$ vlnových délek pomocí matic. (Tento postup je např. velmi vhodný u b).)

2. Série 7. Ročníku - 1. zrcadla

Dvě sousední stěny a strop v krychlové místnosti jsou tvořeny zrcadly. Pozorovatel namíří světelný paprsek tak, že se odrazí postupně od všech tří zrcadel. Určete směr, který bude svírat odražený paprsek s původním.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz