Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (65)biofyzika (16)chemie (18)elektrické pole (56)elektrický proud (60)gravitační pole (64)hydromechanika (119)jaderná fyzika (34)kmitání (37)kvantová fyzika (25)magnetické pole (29)matematika (74)mechanika hmotného bodu (205)mechanika plynů (79)mechanika tuhého tělesa (184)molekulová fyzika (58)geometrická optika (64)vlnová optika (45)ostatní (131)relativistická fyzika (32)statistická fyzika (22)termodynamika (116)vlnění (40)

mechanika tuhého tělesa

(8 bodů)3. Série 32. Ročníku - 4. destrukce smyčky

Představme si měděnou smyčku o poloměru $r$, která je určena rovinou, na níž je kolmé magnetické pole s magnetickou indukcí $B$. Maximální povolené tahové napětí ve smyčce je $\sigma _p$. Nyní začneme měnit magnetický tok ve smyčce z původní hodnoty $\Phi _0$ podle vzahu $\Phi (t) = \Phi _0 + \alpha t$, kde $\alpha $ je kladná konstanta. Určete, za jak dlouho dosáhneme ve smyčce maximálního tahového napětí.

Nápověda: Napěťovou sílu ve smyčce můžeme spočítat jako $T = |BIr|$.

(6 bodů)6. Série 31. Ročníku - 3. neanalytická pružinka

figure

Pružinka

Představme si tyč s délkou $b = 5 \mathrm{cm}$ a hmotností $m = 1 \mathrm{kg}$ a pružinku s klidovou délkou $c = 10 \mathrm{cm}$, s tuhostí $k = 200 \mathrm{N\cdot m^{-1}}$ a se zanedbatelnou hmotností, které jsou na koncích spojeny. Druhé konce tyče a pružinky jsou upevněny ve stejné výšce ve vzdálenosti $a = 10 \mathrm{cm}$ od sebe. Kolem obou upevnění i kolem spoje lze libovolně rotovat. Označme $\phi $ sklon tyče od horizontálního směru. Najděte všechny hodnoty $\phi $, pro které je soustava v rovnovážné poloze. Které z těchto poloh jsou stabilní a které labilní?

Jáchym chtěl vymyslet jednoduchou úlohu.

(7 bodů)6. Série 31. Ročníku - 4. rozměrová analýza

Matěj si doma vyrobil střelnou zbraň a chce změřit, jakou rychlostí vystřeluje náboje. Bohužel nemá k dispozici jiný měřicí přístroj než pravítko. Našel ale kostku, jež je tvořena z poloviny ocelí a poloviny dřevem. Položí ji na kraj stolu (jehož výška je $100 \mathrm{cm}$ a délka je $200 \mathrm{cm}$) a horizontálně do ní vystřelí. Kulka se od ocelové strany dokonale pružně odrazí přesně opačným směrem a dopadne do vzdálenosti $50 \mathrm{cm}$ od stolu. Kostka se na stole posune o $5 \mathrm{cm}$. Potom Matěj kostku otočí a střelí do její dřevěné strany, v níž se kulka zaryje. Nyní naměřil posunutí jen $4 \mathrm{cm}$. Pomozte mu s výpočtem rychlosti výstřelu. Možná se vám bude hodit, že zjistil, že pohyb rozjeté kostky po stole se nezastaví, pokud jednu stranu stolu zvedne do výšky alespoň $20 \mathrm{cm}$.

Matěj chtěl, aby všechny zadané veličiny měly stejnou jednotku.

(3 body)4. Série 31. Ročníku - 2. autisti

Kolik nejméně dětí by muselo roztočit svůj fidget spinner, aby se tak den na Zemi prodloužil o $1 \mathrm{ms}$? Všechny neznámé veličiny odhadněte.

Matěj chtěl mít víc času na „točení“.

(12 bodů)4. Série 31. Ročníku - E. tíha struny

Změřte délkovou hustotu struny, která vám měla přijít poštou společně se zadáním. Strunu ale nesmíte vážit.

Nápověda: Zkuste strunu rozkmitat.

Mišo přemýšlel o strunách na ÚTF.

(7 bodů)3. Série 31. Ročníku - 4. upuštěná propiska

Propisku (tuhou tyč) upustíme na stůl tak, že během svého letu svírá úhel $\alpha $ s vodorovnou rovinou. Jakou rychlostí dopadne její druhý konec (ten, co se stolu dotkne jako druhý), jestliže jsme těžiště upustili z výšky $h$? Všechny srážky jsou nepružné a tření mezi stolem a koncem propisky dostatečně velké.

Bonus: Spočítejte, jaký musíme zvolit úhel $\alpha$, aby druhý konec dopadl s co nejvyšší rychlostí. Pro jaké výšky se vyplatí propisku naklonit?

Matěj se nudil.

(6 bodů)1. Série 31. Ročníku - 3. oběšený úhelník

Máme homogenní úhelník ve tvaru L o stranách délek $b,c$. Je volně zavěšen v železničním vagóně za konec jedné strany tak, že jeho vrchol míří ve směru jízdy vagonu. S jakým zrychlením $a$ se musí vagon pohybovat, aby spodní strana úhelníku byla rovnoběžná se směrem jízdy? Relativistické jevy neuvažujte.

Bonus: Relativistické jevy uvažujte.

Autor je neznámý, asi se oběsil.

(12 bodů)1. Série 31. Ročníku - E. pružnost špejle

figure

Změřte průhyb špejle položené na jejích koncích v závislosti na síle působící na jejím středu (viz obrázek).

Mišo se koukal na jeřáb.

(8 bodů)0. Série 31. Ročníku - 5. Elza cestuje, aneb Mišova pomsta

Elza ráda cestuje vlakem. Při tom si všimla, že ihned po zastavení vlak mírně cukne dozadu. Elza nemá tušení, proč tomu tak je, pomozte jí to tedy objasnit. Uvažujte vlak s lokomotivou (hmotnost $m_r = \mathrm{82 t}$) a čtrnácti vagóny (hmotnost každého z nich je $m_v = \mathrm{48 t}$). Lokomotiva má brzdící váhu $p_r = \mathrm{113 t}$ a každý z vagónů má $p_v = \mathrm{99 t}$.$^1$ Dále uvažujme, že po zabrzdění se brzdící impulz šíří s konstantní rychlostí od lokomotivy na konec vlaku, přičemž poslední vagón začne brzdit za čas $\Delta t = \mathrm{12 s}$ po mašině.

Pro úplnost uvažujme, že spřáhla vozů jsou z části volná a umožňují pohyb. Sílu, kterou působí, můžeme v závislosti na výchylce $x$ popsat jako $x < 0 \Rightarrow F = -x k  ,$

$x = 0 \Rightarrow F = 0  ,$

$x > 0 \Rightarrow F = A \mathrm{sgn} \(x - x_v\)  ,$

kde kladný směr je tehdy, pokud se vozy od sebe vzdalují. Dále $k$ je tuhost nárazníku, $x_v$ je nezáporná konstanta a $A$ je tuhost spřáhla, přičemž $A \gg k$.

  1. Analyticky vyšetřete průběh brzdění vlaku.
  2. Najděte vlastní frekvenci kmitů pro $n$-tý vagón.
  3. Najděte parametry $k$, $A$ a $x_v$ tak, aby kmitání vozů bylo vzhledem k brzdění kriticky tlumené.
  4. Splňuje tento model to, co Elza pozorovala? Udělejte Elze radost a najděte lepší model chování vlaku.
  5. Numericky řešte tento nový model.

Bonus: Řešte případ, ve kterém bude jeden z vozů vypojený, tedy nebude brzdit.

1.) Brzdící váha označuje poměrnou schopnost vozidla brzdit. Je to absolutní jednotka a můžeme jí lineárně přeškálovat na brzdící sílu.

(7 bodů)6. Série 30. Ročníku - 4. zastřel si svého potkana

Mirek by rád zastřelil potkana, kterého vídá na kolejích. Připravil si tedy jednoduchou vzduchovou pušku, kterou si můžeme modelovat jako trubku s konstantním průřezem $S=15\;\mathrm{mm}$ a délkou $l=30\;\mathrm{cm}$, která je na jedné straně uzavřená a na druhé otevřená. Do ní se chystá Mirek umístit náboj hmotnosti $m=2\;\mathrm{g}$, který trubku akorát utěsní, a to ve vzdálenosti $d=3\;\mathrm{cm}$ od uzavřeného konce. Náboj zde zatím nechá upevněný v klidu a natlakuje uzavřenou část trubky na určitý tlak $p_{0}$. Posléze náboj uvolní. Chce aby na konci ústí byla minimálně rychlost náboje $v=90\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Poraďte mu, na jaký tlak by musel vzduchovou pušku natlakovat, aby náboj vyšel s takovou rychlostí, pokud by plyn byl ideální, a diskutujte realističnost uspořádání. Předpokládejte, že náboj je uvolňován kvazistatickým adiabatickým dějem, kde $κ=7/5$, protože se jedná o dvouatomový plyn. Uvažujte, že z vnějšku působí na náboj atmosférický tlak $p_{a}=10^{5}\;\mathrm{Pa}$. Zanedbejte energetické ztráty vyvolané třením, odporem vzduchu a stlačováním plynu před nábojem.

Karel chtěl zjistit, jestli by řešitelé zvládli přijímací řízení na magisterské studium na Matfyz.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz