Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (65)elektrický proud (68)gravitační pole (72)hydromechanika (133)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (250)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (145)relativistická fyzika (35)statistická fyzika (20)termodynamika (130)vlnění (46)

mechanika tuhého tělesa

6. Série 34. Ročníku - 1. krasobruslařka

Uvažujme krasobruslařku s rozpaženýma rukama, točící se úhlovou rychlostí $\omega $ kolem své osy. Jakou úhlovou rychlostí $\omega '$ se bude točit, pokud připaží? Jakou práci musí vykonat, aby připažila? Tvar krasobruslařky aproximujte dle svého uvážení.

Skřítek prokrastinoval sledováním krasobruslení.

6. Série 34. Ročníku - E. rozlitá sklenička

Vezměte si skleničku, plechovku či jinou válcově symetrickou nádobu a změřte závislost úhlu náklonu, při kterém se převrhne, na množství vody uvnitř. Doporučujeme použít nádobu s větším poměrem výšky ku průměru podstavy.

Jindra zaléval stůl.

5. Série 34. Ročníku - 5. rheonomní katapult

Mějme tenkou obdélníkovou desku, která se otáčí kolem své horizontálně orientované hrany konstantní úhlovou rychlostí. V okamžiku, kdy se deska nachází ve vodorovné poloze a otáčí se směrem nahoru, na ni umístíme malý kvádřík tak, aby se vzhledem k ní zpočátku nepohyboval. Jak se bude kvádřík po desce pohybovat, jestliže je tření mezi oběma tělesy nulové? Kam musíme kvádřík na začátku umístit, aby z desky vyletěl po čtvrtině otáčky desky? Diskutujte dále všechny potřebné předpoklady, které pro to musí být splněny.

Bonus: Jaký výkon dodává deska kvádříku a jakou celkovou práci na něm vykoná?

Vaška už omrzely příklady na skleronomní vazby, tak přišel s vazbou rheonomní.

6. Série 33. Ročníku - 3. ověšená

Jak těžké závaží můžeme zavěsit na konec ramínka věšáku bez toho, aby se převrhnul? Věšák je tvořen háčkem z velmi lehkého drátu, který je připevněn ke středu rovné dřevěné tyčky o délce $l=30 \mathrm{cm}$ a o hmotnosti $m=200 \mathrm{g}$. Háček má tvar kružnicového oblouku s poloměrem $r=2,5 \mathrm{cm}$ a s úhlovým rozpětím $\theta =240 \mathrm{\dg }$. Vzdálenost středu oblouku a středu tyčky je $h=5 \mathrm{cm}$. Veškeré tření zanedbejte.

Dodo shání nedostatkové zboží.

5. Série 33. Ročníku - 2. pohne se?

Jáchym chce doma nakládat zelí, a tak si koupil válcový sud. Z obchodu ho však musí nějak dostat metrem domů. Sud i s víkem si můžeme představit jako dutý válec s vnějším poloměrem $r$ a s vnější výškou $h$. Šířka stěn, podstavy i víka je $t$. Sud je vyrobený z materiálu s hustotou $\rho $. S jakým největším zrychlením se může souprava metra pohybovat, aby se volně stojící sud vůči ní nijak nepohnul? Koeficient tření mezi podlahou vagónu a sudem je $f$.

Dodo zase poslouchá Jáchymovy výmluvy.

5. Série 33. Ročníku - 3. Matějova vysněná koule

Přesně na hraně stolu leží homogenní koule o poloměru $r$. Jelikož je to „polovratká“ poloha, začne koule padat ze stolu. Na jakou úhlovou rychlost se roztočí? Předpokládejte, že koule neprokluzuje.

Matějovi se ztratil tenisák.

4. Série 33. Ročníku - E. torzní kyvadlo

Vezměte si alespoň $40 \mathrm{cm}$ dlouhou homogenní tyčku. Ve dvou bodech symetricky vůči jejímu středu k ní přidělejte dva závěsy ze stejného materiálu (například niť nebo vlasec), které dále upevněte k nějakému pevnému stativu tak, aby měly stejnou délku a aby byly rovnoběžné. Změřte periodu torzních kmitů tyčky v závislosti na vzdálenosti závěsů $d$ pro různé délky závěsů $l$ a určete, o jakou závislost na těchto dvou parametrech se jedná. Torzní kmity vypadají tak, že se tyčka otáčí ve vodorovné rovině, přičemž její střed zůstává v klidu.

Karel chtěl hypnotizovat účastníky.

3. Série 33. Ročníku - E. husté měření

Sestavte si hustoměr, např. pomocí brčka a plastelíny, a změřte pomocí něj, jak závisí hustota vody na koncentraci rozpuštěné soli.

Plávajúci Matěj.

2. Série 33. Ročníku - 5. kolečko s pružinkou

Máme tenký dokonale tuhý homogenní disk o poloměru $R$ a hmotnosti $m$, ke kterému je připojena gumička. Jedním koncem je upevněná ve vzdálenosti $2R$ od okraje disku a druhým koncem na jeho okraji. Gumička funguje jako dokonalá tenká pružina o tuhosti $k$, klidové délce $2R$ a zanedbatelné hmotnosti. Disk je upevněný ve svém středu tak, že se může v jedné rovině volně otáčet kolem tohoto bodu, ale nemůže se posouvat či měnit rotační rovinu. Určete závislost velikosti momentu síly, kterou bude gumička urychlovat či zpomalovat rotaci disku v závislosti na úhlové výchylce $\phi $, a sestavte pohybovou rovnici disku.

Bonus: Určete periodu malých kmitů soustavy.

Karlovi se točila hlava.

5. Série 32. Ročníku - 5. odskakující hopík

Tuhou kouli ve vzduchu roztočíme dostatečně velkou úhlovou rychlostí $\omega $ rovnoběžnou se zemí. Poté hopík pustíme z výšky $h_0$ na vodorovnou podložku. Od ní se odrazí do výšky $h_1$ a dopadne nedaleko původního místa dopadu. Určete vzdálenost těchto dvou bodů dopadu, jestliže je třecí koeficient mezi koulí a zemí $f$ dostatečně malý.

Matěj sledoval Fykosáky hrající si s hopíkem.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz