Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (65)biofyzika (16)chemie (18)elektrické pole (56)elektrický proud (60)gravitační pole (64)hydromechanika (119)jaderná fyzika (34)kmitání (37)kvantová fyzika (25)magnetické pole (29)matematika (74)mechanika hmotného bodu (205)mechanika plynů (79)mechanika tuhého tělesa (184)molekulová fyzika (58)geometrická optika (64)vlnová optika (45)ostatní (131)relativistická fyzika (32)statistická fyzika (22)termodynamika (116)vlnění (40)

kvantová fyzika

(9 bodů)0. Série 31. Ročníku - P. teoretická

Jak všichni dobře víme, na velmi malých rozměrech dobře funguje kvantová teorie pole. Na kosmických škálách se naopak projevuje především obecná teorie relativity. Vymyslete konzistentní teorii, která obě předchozí teorie sjednotí.

(6 bodů)6. Série 29. Ročníku - S. závěrečná

 

  • Najděte v tabulkách nebo na internetu, jak se změní entalpie a Gibbsova energie při reakci

$$2\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{H}_2\mathrm{O}\, ,$$ kde jde o přeměnu plynů na plyn a odehrává se při standardních podmínkách. Vypočítejte také, jak se změní entropie při takovéto reakci. Výsledky udávejte vztažené na jeden mol.

  • Pro fotonový plyn platí, že tok energie skrze plochu je dán vztahem

$$j=\frac{3}{4}\frac{k_{\mathrm{B}}^4 \pi^2}{45 \hbar^3 c^3}cT^4\, .$$ Dosaďte hodnoty konstant a porovnejte výsledek se Stefanovým-Boltzmannovým zákonem.

  • Vypočítejte vnitřní energii a Gibbsovu energii fotonového plynu. Dále pomocí vnitřní energie vypočítejte závislost teploty fotonového plynu na objemu při adiabatickém rozpínaní, tedy při procesu s $\delta Q=0$.

Nápověda: Zákon pro adiabatický děj s ideálním plynem jsme odvodili v druhém dílu seriálu.

  • Vezměme si fotonový plyn. Ukažte pro $\delta Q/T$, že pokud ho vyjádříme jako

$$\delta Q / T = f_{,T} \;\mathrm{d} T + f_{,V} \mathrm{d} V \, ,$$ tak funkce $f_{,T}$ a $f_{,V}$ splňují nutnou podmínku na existenci entropie, tedy že $$\frac{\partial f_{,T}(T, V)}{\partial V} = \frac{\partial f_{,V}(T, V)}{\partial T} $$

Janči se pokusil vymyslet jednodušší úlohu než posledně.

(2 body)5. Série 28. Ročníku - 1. tuhost pana Plancka

Možná jste někdy slyšeli o takzvaných Planckových jednotkách, tj. jednotkách vyjádřených na základě fundamentálních fyzikálních konstant – rychlosti světla $c≈3.00\cdot 10^{8}\;\mathrm{m}\cdot \mathrm{s}^{-1}$, gravitační konstanty $G=6.67\cdot 10^{-11}\;\mathrm{m}\cdot \mathrm{kg}^{-1}\cdot \mathrm{s}^{-2}$ a redukované Planckovy konstanty $ħ=1.05\cdot 10^{-34}\;\mathrm{kg}\cdot \mathrm{m}\cdot \mathrm{s}^{-1}$. Takto bývá často zmiňován Planckův čas, Planckova délka a Planckova hmotnost. Co kdyby nás ale zajímala „Planckova tuhost pružiny“? Sestavte na základě rozměrové analýzy z $c$, $G$ a $ħ$ vzorec jednotky odpovídající tuhosti pružiny $[k]=\;\mathrm{kg}\cdot \mathrm{s}^{-2}$. Pro určení vzorce uvažujte, že neznámá a z rozměrové analýzy neurčitelná multiplikativní bezrozměrná konstanta je rovna 1.

Karel se učil kvantovku $\dots$

(6 bodů)6. Série 27. Ročníku - S. spektrální

 

  • Jak bude vypadat spektrum otevřené struny na hmotnostní hladině $M^2 =2⁄α′$? Kolik máme možných stavů struny na této hladině?
  • Pokud bychom uvažovali interakci tachyonu s jinými strunami, zjistili bychom, že ho můžeme popsat přibližně jako částici pohybující se v nějakém potenciálu. Uvažujme model struny, která je upevněna na nestabilní D-bráně. Odpovídající potenciál tachyonu je určen vztahem

$$V(\phi)=\frac{1}{3\alpha'}\frac{1}{2\phi _0}(\phi-\phi _0)^2\left (\phi + \frac{1}{2}\phi _0\right )\,,$$

kde $\alpha'$ a $φ_0$ jsou kladné konstanty. Roznásobte závorky a určete hmotnost tachyonu jako dvojnásobek koeficientu stojícího před $\phi^2$. Najděte minimum potenciálu $\widetilde{\phi}$ a ukažte, že provedeme-li v potenciálu záměnu $\phi \rightarrow \widetilde{\phi}+\phi$ (tj. rozvíjíme teorii kolem minima tachyonového potenciálu), dostaneme po roznásobení a odečtení koeficientu před $\phi^2$ kladnou hmotnost tachyonu. Záporná hmotnost tedy ukazuje na nestabilitu D-brány a ve stabilní konfiguraci, kdy D-brána vymizí (minimum potenciálu), již hmotnost není záporná.

  • Teorie superstrun umožňuje popis fermionů. Pro jejich popis je však potřeba antikomutujících veličin. Pro ty se zavede namísto komutátoru antikomutátor vztahem

$$\{A,B\}=AB + BA$$

Najděte takové dvě $2\times 2$ matice $a$ a $b$, které splňují $\{b,\,b\} = 1$, $\{b,\,b\} = 1$ a $\{a,\,b\} = 0$.

(6 bodů)5. Série 27. Ročníku - S. struna

Uvažujme otevřené struny a omezme se jen na tři prostorové rozměry. Namalujte, jak vypadá

  • struna volně se pohybující v časoprostoru,
  • struna připevněná oběma konci k D2-bráně,
  • struna natažená mezi D2-bránou a D1-bránou.

Jaké jsou možnosti, kde mohou struny končit v případě konfigurace tří rovnoběžných D2-brán?

Vyberte si jednu z funkcí $\mathcal{P}_{\mu}^{\tau}$ nebo $\mathcal{P}_{\mu}^{\sigma}$ definovanou v první části seriálu a najděte její explicitní tvar (tj. přímo závislost na $\dot{X}^{\mu}$ a $X'^{\mu}$). Ukažte, že podmínky $\vect{X}'\cdot \dot{\vect{X}}=0$ a $|\dot{\vect{X}}|^2=-|\vect{X}'|^2$ opravdu vedou na zjednodušení uvedené v textu.

Najděte spektrum energií harmonického oscilátoru.

  • Energie harmonického oscilátoru je dána Hamiltoniánem

$$\hat{H}=\frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2\,.$$ Druhý člen je očividně potenciální energií zatímco první dává po dosazení $\hat{p}=m\hat{v}$ kinetickou energii. Definujme lineární kombinaci $\hat{\alpha}=a\hat{x} + \;\mathrm{i} b\hat{p}$. Určete reálné konstanty $a$ a $b$, tak aby měl Hamiltonián tvar $$\hat{H}=\hbar \omega \left(\hat{\alpha} ^{\dagger}\hat{\alpha} + \frac{1}{2}\right)\,,$$ kde $\hat{\alpha} ^{\dagger}$ je komplexní sdružení $\hat{\alpha}$.

  • Ukažte ze znalosti kanonických komutačních relací pro $\hat{x}$ a $\hat{p}$, že platí

$$\left[\hat{\alpha},\hat{\alpha}\right]=0\,,\quad\left[\hat{\alpha} ^{\dagger},\hat{\alpha} ^{\dagger}\right]=0\,,\quad\left[\hat{\alpha} ,\hat{\alpha} ^{\dagger}\right]=1$$

  • Ve spektru oscilátoru bude určitě stav s minimální energií odpovídající nejmenšímu možnému kmitání. Označme ho $|0\rangle$. Tento stav musí splňovat $\alpha |0\rangle =0$. Ukažte, že je jeho energie rovna $\hbar\omega/2$, tj. $\hat{H}|0\rangle=\hbar\omega/2|0\rangle$. Dále ověřte, že pokud by bylo $\alpha |0\rangle \neq 0$, pak máme spor s tím, že má $|0\rangle$ minimální energii, tj. $\hat{H}\alpha |0\rangle=E\alpha|0\rangle$, kde nyní je $E<\hbar\omega/2$. Všechny vlastní stavy Hamiltoniánu můžeme potom psát jako $\left(\alpha^{\dagger}\right) ^n|0\rangle$ pro $n=0,1,2,\dots$ Najděte energie těchto stavů, tj. čísla $E_n$ taková, že $\hat{H}\left(\alpha^{\dagger}\right) ^n|0\rangle=E_n\left(\alpha^{\dagger}\right)^n|0\rangle$

Tip Použijte komutační relace pro $\hat{\alpha}^{\dagger}$ a $\hat{\alpha}$ .

(4 body)4. Série 27. Ročníku - 4. vybitý puding

Modelů atomu vodíku bylo nespočetné množství a mnohé z nich už jsou překonané, ale my máme rádi puding a tak se vrátíme k tzv. pudinkovému modelu vodíku. Atom tvoří koule o poloměru $R$ s rovnoměrně rozloženým kladným nábojem („puding“), v kterém se nachází jeden elektron („rozinka“). Samozřejmě nejlépe je elektronu v místě s nejnižší energií, tak sedí ve středu pudingu. Celkově je soustava elektricky neutrální. Jakou energii musíme dodat elektronu, abychom ho dostali do nekonečna? Jaký by musel být poloměr pudingu, aby se tato energie rovnala Rydbergově energii (excitační energie elektronu v atomu vodíku)? Poloměr vyjádřete v násobcích Bohrova poloměru.

Jakub varil puding.

(6 bodů)4. Série 27. Ročníku - S. kvantová

 

  • Podívejte se do textu, jak působí operátor polohy $ $$\hat X$$ $ na složky stavového vektoru v $x$-reprezentaci (vlnovou funkci) a spočítejte jejich komutátor, tj.

$$(\hat {X})_x \left((\hat {P})_x {\psi} (x)\right) - (\hat {P})_x \left((\hat {X})_x {\psi} (x)\right) $$

Tip Zjistěte si, co se stane při derivaci součinu dvou funkcí.

  • Problém energetických hladin pro volnou kvantovou částici, tj. pro $V(x)=0$, vypadá následovně:

$$-\frac {\hbar ^2}{2m} \dfrac{\partial^2 {\psi} (x)}{\partial x^2}= E {\psi} (x)$$

  • Zkuste jako řešení dosadit $ψ(x)=e^{αx}$ a zjistěte, pro jaká $α$ (obecně komplexní) je $E$ kladná (nadále používejte pouze taková $α$).
  • Je toto řešení periodické? Pokud ano, tak s jakou prostorovou periodou (vlnovou délkou)?
  • Je získaná vlnová funkce vlastním vektorem operátoru hybnosti (v $x$-reprezentaci)? Pokud ano, najděte souvislost mezi vlnovou délkou a hybností (tj. odpovídajícím vlastním číslem operátoru hybnosti) daného stavu.
  • Zkuste formálně spočítat hustotu pravděpodobnosti výskytu částice v prostoru naší vlnové funkci podle vzorce uvedeného v textu. Pravděpodobnost, že se částice vyskytuje v celém prostoru by měla být pro fyzikální hustotu pravděpodobnosti 1, tj.

$$\int_\mathbb{R} \rho(x) \;\mathrm{d} x=1.$$

Ukažte, že nelze naší vlnovou funkci $nanormovat$ (tj. přenásobit nějakou konstantou) tak, aby její formální hustota pravděpodobnosti podle vzorce z textu byla opravdovou, fyzikální hustotou pravděpodobnosti.

Bonus: Jaká si myslíte, že je limitně neurčitost polohy částice, jejíž vlnová funkce je hodně blízká té naší? (Tj. blíží se ve všech vlastnostech, ale má vždy normovanou hustotu pravděpodobnosti a je to tudíž fyzikální stav.) Lze odhadnout pomocí Heisenbergových relací neurčitosti jaká přitom bude nejméně neurčitost hybnosti?

Tip Dávejte pozor na komplexní čísla, například kvadrát komplexního čísla je něco jiného než kvadrát velikosti komplexního čísla.

  • V druhém díle jsme si odvodili energetické hladiny elektronu ve vodíku pomocí redukované akce. Zvláštní shodou by řešení spektra hamiltoniánu v coulombickém potenciálu protonu vedlo na úplně samé energie, tj.

$$E_n = -{\;\mathrm{Ry}} \frac {1}{n^2}$$

kde $\mathrm{Ry} = 13,6\, \jd{eV}$ je energetická konstanta známá jako Rydbergova konstanta. Elektron, který spadne z libovolné hladiny na $n=2$, vyzáří energii ve formě jediného fotonu úměrnou rozdílu energie daných hladin. Ze kterých hladin musí elektron na druhou hladinu spadnout, aby bylo vyzářené světlo viditelné? Jakou budou mít odpovídající spektrální čáry barvu?

Tip Vzpomeňte si na fotoelektrický jev a na vztah mezi frekvencí světla a jeho vlnovou délkou.

(5 bodů)1. Série 27. Ročníku - P. rychlost světa

Jaký by byl svět, ve kterém by byly stejné hodnoty fundamentálních fyzikálních konstant, jenom rychlost světla by byla pouze $c=1000\;\mathrm{km}\cdot \mathrm{h^{-1}}$? Jaký by byl takový svět pro život na Zemi, život lidí? A bylo by vůbec možné, aby v takovém světě existovali lidé?

Karel zase navrhl neřešitelnou úlohu.

5. Série 23. Ročníku - 1. fotonová fontána

Honza není spokojen se současným standardem postelí, a proto začal testovat levitaci na laseru. Koupil si kuličku s dokonale vyleštěným zrcadlovým povrchem o hmotnosti $m$, poloměru $r$ a položil ji na zem. Podlaha se rozzářila lasery o vlnové délce $λ$ a plošném výkonu $P$. V jaké výšce nad zemí se kulička ustálila? Za bonusové body můžete vyřešit situaci, kdy je kulička skleněná. V obou případech uvažujeme, že ji laser neroztaví a že se experiment odehrává v homogenním gravitačním poli.

Do fyziklání přinesl Honza Humplík

4. Série 23. Ročníku - 2. horečka

Janap šla domů z hvězdárny a při pohledu na východ Slunce ji napadlo, jak by asi jednoduše šla spočítat jeho teplota. Prozradíme vám, že Země je absolutně černé těleso s teplotou $0\, \jd{^{o}C}$.

na přednášce ze statistické fyziky řešila Janap

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz