Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (60)biofyzika (15)chemie (16)elektrické pole (54)elektrický proud (56)gravitační pole (56)hydromechanika (103)jaderná fyzika (31)kmitání (35)kvantová fyzika (21)magnetické pole (27)matematika (73)mechanika hmotného bodu (192)mechanika plynů (75)mechanika tuhého tělesa (165)molekulová fyzika (45)geometrická optika (62)vlnová optika (42)ostatní (125)relativistická fyzika (31)statistická fyzika (21)termodynamika (106)vlnění (38)

(7 bodů)5. Série 31. Ročníku - 4. tepelné ztráty

Na jaké teplotě se ustálí vnitřní prostředí bytu v panelovém domě? Uvažujte, že náš byt sousedí delšími stěnami, stropem a podlahou s dalšími byty, ve kterých je udržována teplota $22 \mathrm{\C }$. Kratšími stěnami sousedí s okolím, kde je teplota $-5 \mathrm{\C }$. Vnitřní rozměry bytu jsou – výška $h = 2{,}5 \mathrm{m}$, šířka $a = 6 \mathrm{m}$ a délka $b = 10 \mathrm{m}$. Součinitel měrné teplotní vodivosti stěn je $\lambda = 0{,}75 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$. Vnější stěny a stropy jsou tlusté $D\_{out} = 20 \mathrm{cm}$ a vnitřní $D\_{in} = 10 \mathrm{cm}$.

Jak se změní výsledek, pokud budovu zvenku zateplíme polystyrenem o tloušťce $d = 5 \mathrm{cm}$ s měrnou tepelnou vodivostí $\lambda ' = 0{,}04 \mathrm{W\cdot K^{-1}\cdot m^{-1}}$?

Karel přemýšlel nad tím, jak to funguje v paneláku…

(3 body)4. Série 31. Ročníku - 1. zmrzlina

Odhadněte, kolik gramů zmrzliny dokážeme vyrobit, pokud máme k dispozici $5 \mathrm{l}$ kapalného dusíku o teplotě $-196 \mathrm{\C }$ a neomezené množství mléka a smetany o pokojové teplotě $22 \mathrm{\C }$? Předpokládejme, že požadovaná zmrzlina se skládá jen z mléka a smetany (hmotnostně půl na půl) a měla by mít teplotu $-5 \mathrm{\C }$. Protože se tepelné kapacity mléka a smetany v tomto intervalu teplot značně mění, počítejte s jejich průměrnými hodnotami $c\_m = 3{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro mléko a $c\_s = 4{,}45 \mathrm{kJ\cdot kg^{-1}\cdot K^{-1}}$ pro smetanu. Zbylé potřebné údaje si dohledejte na internetu.

Michal dostal chuť na zmrzlinu.

(3 body)1. Série 31. Ročníku - 1. kávu si omléčním

Kdy je nejvhodnější nalít do horké kávy chladné mléko, abychom ji mohli pít co nejdříve? Nepožadujeme přesný výpočet, ale podrobný slovní popis toho, jak káva chladne a jak byste postupovali.

Terka S. se zarazila při výroku: Už jsem Ti do toho kafe dala mléko, aby Ti to rychleji vystydlo.

(7 bodů)1. Série 31. Ročníku - 4. praská mi v láhvi

Co když si skoro prázdnou 1,5 litrovou PET láhev uzavřeme v dobře vytápěné kanceláři, dejme tomu na $t\_k = 26 \mathrm{\C }$, a pak vyjdeme vstříc novým zážitkům dolů ze schodů? Láhev začne praskat. Co má větší vliv? To, že se mění atmosférický tlak, jak scházíme 10 pater v budově, nebo to, že je na schodech, dejme tomu, $t \_s = 15 \mathrm{\C }$?

Karel šel na Matfyzu v Troji ze schodů.

(7 bodů)6. Série 30. Ročníku - 4. zastřel si svého potkana

Mirek by rád zastřelil potkana, kterého vídá na kolejích. Připravil si tedy jednoduchou vzduchovou pušku, kterou si můžeme modelovat jako trubku s konstantním průřezem $S=15\;\mathrm{mm}$ a délkou $l=30\;\mathrm{cm}$, která je na jedné straně uzavřená a na druhé otevřená. Do ní se chystá Mirek umístit náboj hmotnosti $m=2\;\mathrm{g}$, který trubku akorát utěsní, a to ve vzdálenosti $d=3\;\mathrm{cm}$ od uzavřeného konce. Náboj zde zatím nechá upevněný v klidu a natlakuje uzavřenou část trubky na určitý tlak $p_{0}$. Posléze náboj uvolní. Chce aby na konci ústí byla minimálně rychlost náboje $v=90\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Poraďte mu, na jaký tlak by musel vzduchovou pušku natlakovat, aby náboj vyšel s takovou rychlostí, pokud by plyn byl ideální, a diskutujte realističnost uspořádání. Předpokládejte, že náboj je uvolňován kvazistatickým adiabatickým dějem, kde $κ=7/5$, protože se jedná o dvouatomový plyn. Uvažujte, že z vnějšku působí na náboj atmosférický tlak $p_{a}=10^{5}\;\mathrm{Pa}$. Zanedbejte energetické ztráty vyvolané třením, odporem vzduchu a stlačováním plynu před nábojem.

Karel chtěl zjistit, jestli by řešitelé zvládli přijímací řízení na magisterské studium na Matfyz.

(9 bodů)6. Série 30. Ročníku - P. vypařující se asteroid

Umístíme hodně velký kus ledu, dejme tomu o průměru $1\; \mathrm{km}$, do blízkosti hvězdy podobné Slunci na kruhovou dráhu. Blízkost je tak velká, že rovnovážná teplota černého tělesa by v této vzdálenosti byla zhruba $30\; \mathrm{°C}$. Co se bude dít s takovým asteroidem a jeho drahou? Asteroid nemá vázanou rotaci.

Karel má rád astrofyziku, a tak zase něco navrhuje.

(8 bodů)4. Série 30. Ročníku - 4. plynový stroj

figure

Mějme tepelný stroj naplněný ideálním plynem složeným z dvouatomových molekul. Tento tepelný stroj vykonává kruhový děj $\mathrm{ABCDEFA}$ (viz obrázek), tedy skládá se z šesti dějů

  • $\mathrm{A} \longrightarrow \mathrm{B}$ - izobarické zahřátí ze stavu $4p_{0}$ a $V_{0}$ (teplotu v A označme jako $4T_{0}$) do stavu s objemem $3V_{0}$,
  • $\mathrm{B} \longrightarrow \mathrm{C}$ - izotermická expanze na objem $4V_{0}$,
  • $\mathrm{C} \longrightarrow \mathrm{D}$ - izochorické ochlazení na tlak $p_{0}$,
  • $\mathrm{D} \longrightarrow \mathrm{E}$ - izobarické ochlazení na objem $2V_{0}$,
  • $\mathrm{E} \longrightarrow \mathrm{F}$ - izotermická komprese na objem $V_{0}$,
  • $\mathrm{F} \longrightarrow \mathrm{A}$ - izochorické zahřátí na tlak $4p_{0}$. Určete zbývající stavové veličiny ve stavech $\mathrm{B}$, $\mathrm{C}$, $\mathrm{D}$, $\mathrm{E}$ a $\mathrm{F}$, maximální a minimální teplotu ideálního plynu v průběhu děje (v násobcích $T_{0}$), teplo přijaté či odevzdané plynem v jednotlivých dějích a účinnost tepelného stroje. Srovnejte tuto účinnost s účinností Carnotova stroje pracujícího se stejnými maximálními a minimálními teplotami. Pro jednoduchost uvažujte, že se nemění látkové množství plynu ve stroji a nedochází v něm k chemickým přeměnám.

Bonus: To samé proveďte pro jednodušší cyklický „čtvercový“ děj, tedy $\mathrm{ABCDA}$, kde plyn začíná ve stavu $p_{0}$, $V_{0}$ a $T_{0}$ a izochoricky se ohřeje na $4p_{0}$, izobaricky se zahřeje a rozepne na $4V_{0}$, izochoricky ochladí na $p_{0}$ a izobaricky se ochladí na $V_{0}$. Srovnejte účinnosti těchto dvou tepelných strojů a diskutujte, který je lepší.

Karlovi bylo střídavě teplo a zima.

(3 body)2. Série 30. Ročníku - 2. hypervysokoteplotní supravodivost

Velké části látek, obvykle kovům, roste s vyšší teplotou odpor. Jsou ovšem látky, jako například grafit či polovodiče, kterým odpor s rostoucí teplotou klesá. Také jste již pravděpodobně slyšeli o supravodivosti, což je jev, který obvykle nastává za velmi nízkých teplot a jedná se o stav, ve kterém látka nevykazuje žádný elektrický odpor a dokonale vede elektrický proud. V současné době jsou nejvyšší teploty, ze kterých byla supravodivost pozorována, hluboko pod pokojovou teplotou. Co kdybychom ale uvažovali, že se odpor mění dle vzorečku $R=R_{0}(1+αΔt)$, kde $R_{0}$ je odpor vodiče pro $20\; \mathrm{°C}$, $α$ je teplotní součinitel elektrického odporu a $Δt$ teplotní rozdíl vůči původní teplotě $20\; \mathrm{°C}$? Tak při hodnotách součinitelů pro grafit $α_\mathrm{C}=-0,\! 5 \cdot 10^{-3}\; \mathrm{K^{-1}}$ a křemík $α_\mathrm{Si}=-75 \cdot 10^{-3}\; \mathrm{K^{-1}}$ dostáváme nulový odpor pro vysoké teploty. Pro jaké? A jak to, že to ve skutečnosti nefunguje a jak uhlík, tak křemík nejsou za vysokých teplot supravodivé?

Karel se inspiroval nekonstantními konstantami.

(9 bodů)2. Série 30. Ročníku - P. efektivní (ná)stroj

Palné zbraně jsou vlastně takovými tepelnými stroji. Spočítejte jaká je účinnost nějaké pušky nebo pistole. (Jde o využití energie střeliva pro pohyb kulky.)

Michal původy svých nápadů raději nesděluje.

(3 body)1. Série 30. Ročníku - 1. s rumem či bez?

Do kuchyňského kastrolu, který prakticky nevede teplo, vložíme tři látky: vodu, ocel a rum. Voda má hmotnost $m_\mathrm{v}=0,\! 5\; \mathrm{kg}$, teplotu $t_\mathrm{v} = 90\; \mathrm{°F}$ a měrnou tepelnou kapacitu $c_\mathrm{v} = 1\; \mathrm{kcal \cdot kg^{-1} \cdot K^{-1}}$. Ocelový váleček má hmotnost $m_\mathrm{o} = 200\; \mathrm{g}$, teplotu $t_\mathrm{o} = 60\; \mathrm{°C}$ a měrnou tepelnou kapacitu $c_\mathrm{o} = 0,\! 260\; \mathrm{kJ \cdot kg^{-1} \cdot °F^{-1}}$. Rum má hmotnost $m_\mathrm{r}=100\,000\; \mathrm{mg}$, teplotu $t_\mathrm{r}=270\; \mathrm{K}$ a měrnou tepelnou kapacitu $c_\mathrm{r} = 3,\! 5\; \mathrm{J \cdot g^{-1} \cdot °C^{-1}}$. Jakou teplotu (ve stupních Celsia) bude mít soustava po ustálení tepelné rovnováhy?

Lukáš Mirkovi sděloval svoje zkušenosti s alkoholem.

(4 body)6. Série 29. Ročníku - 4. fire in the hole

Pro ohřev plasmatu ve fúzních zařízeních se používají svazky neutrálních částic. V takovém zařízení se nejprve urychlí ionty deuteria na vysokou energii a následně se přenosem náboje neutralizují, přičemž si zachovávají téměř původní rychlost. Na tokamaku COMPASS mají částice na výstupu ze svazku energii $40\; \mathrm{keV}$ a proud ve svazku těsně před neutralizací je $12\; \mathrm{A}$. Jaká síla působí na generátor svazku? Jaký je jeho výkon?

Aleš koukal na vypálenou díru ve ventilu.

(6 bodů)6. Série 29. Ročníku - S. závěrečná

 

  • Najděte v tabulkách nebo na internetu, jak se změní entalpie a Gibbsova energie při reakci

$$2\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{H}_2\mathrm{O}\, ,$$ kde jde o přeměnu plynů na plyn a odehrává se při standardních podmínkách. Vypočítejte také, jak se změní entropie při takovéto reakci. Výsledky udávejte vztažené na jeden mol.

  • Pro fotonový plyn platí, že tok energie skrze plochu je dán vztahem

$$j=\frac{3}{4}\frac{k_{\mathrm{B}}^4 \pi^2}{45 \hbar^3 c^3}cT^4\, .$$ Dosaďte hodnoty konstant a porovnejte výsledek se Stefanovým-Boltzmannovým zákonem.

  • Vypočítejte vnitřní energii a Gibbsovu energii fotonového plynu. Dále pomocí vnitřní energie vypočítejte závislost teploty fotonového plynu na objemu při adiabatickém rozpínaní, tedy při procesu s $\delta Q=0$.

Nápověda: Zákon pro adiabatický děj s ideálním plynem jsme odvodili v druhém dílu seriálu.

  • Vezměme si fotonový plyn. Ukažte pro $\delta Q/T$, že pokud ho vyjádříme jako

$$\delta Q / T = f_{,T} \;\mathrm{d} T + f_{,V} \mathrm{d} V \, ,$$ tak funkce $f_{,T}$ a $f_{,V}$ splňují nutnou podmínku na existenci entropie, tedy že $$\frac{\partial f_{,T}(T, V)}{\partial V} = \frac{\partial f_{,V}(T, V)}{\partial T} $$

Janči se pokusil vymyslet jednodušší úlohu než posledně.

(5 bodů)5. Série 29. Ročníku - P. metrová

Jak všichni víme, v jeskyních střední Evropy je docela zima, okolo $4\; \dg\mathrm{C}$. Proč je v metru docela teplo celý rok? Uvolňuje se více tepla z přítomných lidí, nebo spíše z technického zázemí?

Napadla Lukáše při čekání na metro.

(6 bodů)5. Série 29. Ročníku - S. přirozeně proměnná

 

  • Použijte vztah pro entropii ideálního plynu $S(U,V,N)$ z řešení třetí seriálové úlohy

$$S(U,V,N) = \frac{s}{2}n R \ln{\left( \frac{U V^{\kappa -1}}{\frac{s}{2}R n^{\kappa} } \right)} nR s_0$$ a vztah pro změnu entropie $$\mathrm{d} S = \frac{1}{T}\mathrm{d} + U \frac{p}{T} \mathrm{d} V - \frac{\mu}{T} \mathrm{d} N$$ a vypočítejte chemický potenciál jako funkci $U$, $V$ a $N$. Upravte dále na funkci $T$, $p$ a $N$.
Pomůcka: Přečtěte si o derivacích a malých změnách v druhém díle seriálu. Nyní by už mělo být zřejmější, že koeficienty jako $1/T$ před $\mathrm{d}U$ spočítáte jako parciální derivaci $S(U,V,N)$ podle $U$. Nezapomeňte na užitečný vztah $\ln{(a/b)}=\ln{a}-\ln{b}$ a že $n=N/N_{A}$.
Bonus: Vyjádřete tímto způsobem i teplotu a tlak jako funkce $U$, $V$ a $N$. Eliminujte závislost tlaku na $U$, abyste dostali stavovou rovnici.

  • Je chemický potenciál ideálního plynu kladný, nebo záporný ($s_{0}$ považujte za zanedbatelné)?
  • Co se bude dít s plynem v pístu, pokud je plyn napojený na rezervoár s teplotou $T_{\mathrm{r}}?$ Píst se může volně pohybovat a z druhé strany na něj nic nepůsobí. Popište, co se bude dít, pokud dovolíme jen kvazistatické procesy. Kolik práce takto dokážeme extrahovat? Platí, že se takto minimalizuje volná energie?

Pomůcka: Na výpočet práce se vám může hodit vztah $$\int _{a}^{b} \frac{1}{x} \;\mathrm{d}x = \ln \frac{b}{a}.$$

  • Entalpii jsme definovali jako $H=U+pV$, Gibbsovu energii jako $G=U-TS+pV$. Jaké jsou přirozené proměnné těchto potenciálů? Jaké termodynamické veličiny dostaneme derivacemi těchto potenciálů podle svých přirozených proměnných?
  • Vypočítejte změnu grandkanonického potenciálu $\textrm{d}Ω$ z jeho definičního vztahu $Ω=F-μN$.

Janči se snažil představit si chemický potenciál.

(2 body)4. Série 29. Ročníku - 1. kofolová

Mějme kofolu s energetickou hodnotou $Q_{\mathrm{k}}=1360\; \mathrm{kJ}\cdot\mathrm{kg}^{-1}$ a teplotou $t_{\mathrm{k}}=24\;\dg\mathrm{C}$ a kofolu bez cukru s energetickou hodnotou $Q_{\mathrm{bez}}=14,\! 4\; \mathrm{kJ}\cdot\mathrm{kg}^{-1}$ a teplotou $t_{\mathrm{bez}}=4\;\mathrm{°C}$. Pokud předpokládáme, že v jiných vlastnostech se kofoly od vody neliší, při jaké teplotě můžeme pít směs těchto kapalin tak, aby byla celková získaná energie nulová?

(6 bodů)4. Série 29. Ročníku - S. pracovní

 

  • Z nerovnosti

$$\Delta S_{\mathrm{tot}} \geq 0 $$ ze seriálu vyjádřete $W$ a odvoďte tak nerovnost pro práci $$W \leq Q \left( 1 - \frac {T_\textrm{C}}{T_\textrm{H}} \right) \, .$$

  • Vypočítejte účinnost Carnotova cyklu bez použití entropie.

Pomůcka: Napište si 4 rovnice spojující 4 vrcholy Carnotova cyklu: $$p_1 V_1 = p_2 V_2, \;\; p_2 V_2^{\kappa} = p_3V_3^{\kappa}, \;\; p_3V_3 = p_4V_4, \;\; p_4V_4^{\kappa} = p_1V_1^{\kappa}$$ a vynásobte je všechny čtyři spolu. Po úpravě dostanete $$\frac {V_2}{V_1} = \frac {V_3}{V_4}\, .$$ Následně stačí použít vzorec na práci při izotermickém procesu: když přechází proces z objemu $V_{\textrm{A}}$ do $V_{\textrm{B}}$, práce vykonaná na plyn je $$nRT\;\ln{\left(\frac{V_\textrm{A}}{V_\textrm{B}}\right)}\, .$$ Teď už si stačí jen uvědomit, že práce při izotermickém ději je rovná teplu (se správným znaménkem) a vypočítat získanou práci (vzpomeňte si, že adiabatické procesy nepřispívají) a odebrané teplo. Na řešení stačí doplnit detaily tohoto postupu.

  • Minule jste pracovali s $pV$ a $Tp$ diagramem. Udělejte stejné cvičení s $TS$ diagramem, tedy nakreslete tam izotermický, izobarický, izochorický a adiabatický proces. Nakreslete do diagramu také cestu plynu v Carnotově cyklu a označte správně směr a vrcholy, aby souhlasily s obrázkem v seriálu.
  • V seriálu jsme se zmínili, že někdy je třeba dávat pozor na přijaté a odebrané teplo. Někdy se totiž to, jestli teplo přijímáme nebo odevzdáváme, mění v průběhu procesu. Jeden z příkladů je proces

$$p=p_0\;\mathrm{e}^{-\frac{V}{V_0}}\, ,$$ kde $p_{0}$ a $V_{0}$ jsou konstanty. Určete, pro jaké hodnoty $V$ (při rozpínání) proudí teplo do plynu a kdy z plynu.

(2 body)3. Série 29. Ročníku - 1. bláznivá rybička

V akváriu ve tvaru koule s poloměrem $r=10\;\mathrm{cm}$ plně naplněném vodou plavou v opačných směrech dvě stejné rybičky. Rybička má průřez $S=5\;\mathrm{cm}$, Newtonův odporový koeficient $C=0,\! 2$ a plave rychlostí $v=5\;\mathrm{km}\cdot\mathrm{h}^{-1}$ vůči vodě. Jak dlouho musí rybičky v akváriu plavat, aby ohřály vodu o $1$ stupeň Celsia? Tepelné ztráty a biologické procesy v rybičkách zanedbejte.

(6 bodů)3. Série 29. Ročníku - S. entropická

 

  • Všechny stavy ideálního plynu umíme nakreslit jako digramy: $pV$ diagram, $pT$ diagram a tak dále. Na svislou osu se vynáší první veličina, na vodorovnou osu se vynáší druhá veličina. Každý bod tedy určuje dva parametry. Načrtněte do $pV$ diagramu 4 děje s ideálním plynem, které znáte. Udělejte to stejné pro $Tp$ diagram. Jak by vypadal $UT$ diagram? Vysvětlete, jak se nevhodnost těchto dvou proměnných jeví na tomto obrázku.
  • Jaké jednotky má entropie? Jaké jiné veličiny s těmito jednotkami znáte?
  • V seriálu jsme rozebrali případ nárůstu entropie, když plyn přijímal teplo. Proveďte podobnou úvahu pro plyn odevzdávající teplo.
  • Víte, že při adiabatickém ději se entropie nemění. Proto entropie jako funkce objemu a tlaku $S(p,V)$ může obsahovat jen takovou kombinaci objemu a tlaku, která se také při adiabatickém procesu nemění. Jaký je to výraz? Nakreslete na $pV$ diagram (svislá osa je $p$, vodorovná $V$) křivky, na kterých je entropie konstantní. Souhlasí výsledek této úvahy se vzorcem, který jsme pro entropii odvodili?
  • Vyjádřete entropii ideálního plynu jako funkci $S(p,V)$, $S(T,V)$ a $S(U,V)$.

(6 bodů)2. Série 29. Ročníku - S. procesní

 

  • Které ze skupiny procesů (izobarický, izochorický, izotermický a adiabatický) můžou být vratné?
  • Vezměte vztah $T=pV / (nR) $ s $n=1\;\textrm{mol}$, $p=100\;\textrm{kPa}$ a $V=22\;\textrm{l}$. O kolik se změní $T$, když $p$ i $V$ zvětšíme o $10\;\%$, $1\;\%$ a $0,\! 1\; \%$? Spočítejte to dvěma způsoby: přesně a pomocí vztahu $\mathrm{d}T=T_{,p}\mathrm{d}p + T_{,V} \mathrm{d}V$. Jak se tyto výsledky liší?
  • d gymnastika:
    • Ukažte, že $\mathrm{d} \left[ C f(x) \right] = C \mathrm{d} [f(x)]$, kde $C$ je konstanta.
    • Vypočítejte $\mathrm{d} (x^2)$ a $\mathrm{d} (x^3)$
    • Ukažte, že $\mathrm{d} \left( 1/x \right)= - dx/x^2$ z definice, tedy $\mathrm{d} \left(\frac{1}{x}\right)= \frac{1}{x+ \mathrm{d} x} - \frac{1}{x}$. Může se vám hodit: $(x + \mathrm{d} x)(x-\mathrm{d} x) = x^2 - (\mathrm{d} x)^2 = x^2$.
    • Bonus: Platí $\sin{(\mathrm{d} \vartheta)} = \mathrm{d} \vartheta$ a $\cos{\mathrm{d} \vartheta} = 1 $. Také máte součtový vzorec $\sin{(\alpha + \beta)}= \sin \alpha \cos \beta + \cos \alpha \sin \beta$, dokažte $\mathrm{d}\left( \sin{\vartheta} \right)=\cos{\vartheta} \mathrm{d}\vartheta$
    • Bonus: Podobně ukažte $ \mathrm{d} \left( \ln{x} \right) = \mathrm{d}x/x $ s pomocí $\ln (1 + \mathrm{d}x) = \mathrm{d}x$
  • Vysvětlete fyzikálně, proč je izobarická tepelná kapacita větší než izochorická.

(6 bodů)1. Série 29. Ročníku - S. zahřívací

 

  • Na rozehřátí a seznámení se s čísly zjistěte, do jaké výšky byste mohli zdvihnout průměrného člověka ($70\; \textrm{kg}$), využijete-li celou energii běžné tyčinky Mars (okolo $250\; \textrm{Cal}$ pro $50\textrm{g}$ tyčinku). Také vypočtěte, jaká energie je $k_{\textrm{B}}T$ při pokojové teplotě a vyjádřete ji také v elektronvoltech (pokud neznáte takovou jednotku energie, vězte, že je to energie, kterou získá elektron při urychlení na rozdílu potenciálů $1\; \textrm{V}$, a číselně $1\;\textrm{eV} = 1,\! 602 \cdot 10^{-19}\; \textrm{J}$).
  • Se stavovou rovnicí se dá hodně cvičit. Když namísto počtu částic použijete molární množství $n$, dostanete

$$pV = n N_{\mathrm{A}} k_{\mathrm{B}} T \, ,$$ kde se součin $N_{\textrm{A}}k_{\textrm{B}}$ značí $R$ a nazývá se univerzální plynová konstanta. Určete její hodnotu. Také dále upravte stavovou rovnici do tvaru, ve kterém se vyskytuje hmotnost plynu, a potom do tvaru obsahujícího hustotu plynu.

  • Určete objem molu plynu při pokojové teplotě. Toto číslo je užitečné znát zpaměti.
  • Nakonec trochu úvahová úloha. Povšimněte si, že v diskusi o práci ideálního plynu jsme automaticky použili tlak plynu. Zkuste sebe a mě přesvědčit, že je to ten správný tlak – já bych totiž namítal, že jsme mohli použít okolní tlak nebo dokonce rozdíl tlaků vně a uvnitř.

Poznámka: Hodnocení této části bude mírné, nebojte se zamyslet a napsat cokoli, na co přijdete.

(8 bodů)5. Série 28. Ročníku - E. sladíme

Změřte závislost teploty tuhnutí vodného roztoku sacharózy na koncentraci za atmosférického tlaku.

Pikoš v zimě sladil chodník.

(5 bodů)3. Série 28. Ročníku - 5. sféricky symetrické kuře ve vakuu

Do nádoby o objemu $V=1\;\mathrm{m^3}$, ve které je velmi nízký tlak (prakticky dokonalé vakuum), umístíme $V_{0}=1\,\jd{l}$ vody o pokojové teplotě $t_{0}$. Jaký bude konečný stav, ve kterém se bude nacházet nádoba a voda v ní? Pro účely výpočtu předpokládejte, že nádoba je dokonale tepelně izolovaná od okolního prostředí a má zanedbatelnou tepelnou kapacitu.

Karel se nechal inspirovat problémem, o kterém spekuloval jeden spolužák na Didaktice II.

(4 body)2. Série 28. Ročníku - 4. Boeing

Uvažujte pneumatiku válcovitého tvaru o poloměru $R$ s vnitřním otvorem o poloměru $r$ šířky $d$ huštěnou na tlak $p$. Pneumatiku zatížíme silou $F$. Při tomto zatížení se změní tvar pneumatiky z válce na válcovou úseč se stejným vnitřním i vnějším poloměrem. Předpokládejte, že se teplota pneumatiky zatížením nezmění. Určete plochu styku pneumatiky s vozovkou.

Lukáš si v noci hraje v postýlce s letadýlkem.

(4 body)2. Série 27. Ročníku - 3. týrání pístu

Máme nádobu o konstantním průřezu, která obsahuje ideální plyn a píst ve výšce $h$. Píst nejprve rychle (tzn. prakticky adiabaticky) stlačíme do výšky $h\!⁄\!2$, podržíme ho, než nastane tepelná rovnováha s okolím, a pak ho pustíme. Do jaké výšky píst vystoupá ihned? Do jaké výšky vystoupá za dlouhou dobu? Nakreslete $pV$ diagram.

Karel přemýšlel nad pístem.

(4 body)1. Série 27. Ročníku - 3. bublina v ropovodu

Máme malou kulatou bublinku plynu v kapalině, která teče nějakou rychlostí vodorovným potrubím. Jak se změní její rozměry, když se dostane do místa, kde je potrubí zúžené? K čemu se to dá využít, nebo naopak kde to dělá problémy? Uvažujte laminární proudění.

Karel se zamyslel nad osvěžovačem vzduchu.

(5 bodů)3. Série 26. Ročníku - 5. Gazprom

Na plynovodu na daleké Sibiři, kterým teče zkapalněný zemní plyn, došlo k havárii a bylo nutné jej uzavřít. Spočítejte, jakou práci musel vykonat Váňa Vasilijevič, který byl vyslán k zásobníku zavřít výborně promazaný deskový ventil na příslušné lince. Jakou sílu musel během tohoto aktu vynakládat (vyjádřete ji v závislosti na rozumně vybrané veličině)? Ventil si představte jako desku, která je postupně vsouvána ze strany napříč do potrubí. Ve velkém rezervoáru, který je na linku připojen, je tlak $p=2\;\mathrm{MPa}$, deskový ventil má tloušťku $d=10\;\mathrm{cm}$, potrubí má čtvercový průřez o straně $a=1\;\mathrm{m}$ a zkapalněný plyn o hustotě $ρ=480\;\mathrm{kg/m}$ jím protéká s průtokem $q=20\;\mathrm{m}\;3\;\mathrm{s}$.

Aleš poslouchal motivační píseň ruského plynárenského gigantu.

(4 body)4. Série 25. Ročníku - 5. únik plynu

Spočtěte, kolik procent své hmotnosti za rok ztratí zemská atmosféra, pokud uvážíte, že končí 10 \;\mathrm{km} nad zemí, po celé své výšce má konstantní tlak (stejný jako u hladiny moře), je tvořena ideálním plynem o teplotě 300 \;\mathrm{K}, splňuje Maxwellovo rychlostní rozdělení a gravitace se v jejím objemu nijak neprojevuje.

Aleše napadlo při úniku.

(8 bodů)4. Série 25. Ročníku - E. už to bublá!

Změřte účinnost rychlovarné konvice. Údaj o příkonu naleznete obvykle na samolepce zespodu konvice. Výkon určíte tak, že zjistíte, o kolik stupňů Celsia se zahřál daný objem vody za jednotku času. Pokuste s se minimalizovat chybu měření a popište, jak jste se toho snažili dosáhnout.

Varování: Rozhodně sami nepoužívejte voltmetr a ampérmetr u takto vysokého napětí a proudu.

Ve FYKOSárně to vře.

(5 bodů)4. Série 25. Ročníku - P. účet za topení

V některých bytovkách se teplá voda ohřívá centrálně pro všechny její obyvatele. V zásobníku je během dne udržována konstantní teplota vody. Šetřiví obyvatelé však ohřev na noc vypínají, voda tedy do rána vystydne a poté se opět musí ohřát. Odhadněte (na základě vyhledaných údajů), kolik energie se tímto ušetří, a navrhněte obyvatelům lepší způsoby, jak ušetřit při zachování komfortu.

Pikoš platil účet za plyn.

(4 body)1. Série 25. Ročníku - 3. hustilka

Jakou teplotu má vzduch, který foukáme do duše kola? Duši hustíme na 3 atmosféry, do pumpičky přichází vzduch o teplotě 20 ° C.

Lukáš s Jáchymem diskutovali o plynech a válcích.

6. Série 24. Ročníku - 4. konečné řešení otázky globálního oteplování

Jak by se změnil výkon slunečního záření dopadajícího na Zemi v odsluní, když by byla jednorázově vychýlena zemská dráha (změnou její okamžité rychlosti ve směru její dráhy) tak, aby byl pozemský rok o týden delší? Odhadněte teplotu Země v přísluní a odsluní, pokud by Země měla téměř nulovou tepelnou kapacitu. Stačí uvažovat, že původní dráha Země byla kruhová a přešla na eliptickou.

Karel se díval na Futuramu

4. Série 24. Ročníku - 4. sama doma

Terka J. mívá většinou skvělé nápady. Třeba minulé pondělí si od svého oblíbeného dermatologa přinesla 5 litrů kapalného dusíku a ihned ho vylila na zem ve své ubikaci. Ve středu pro změnu odcizila na čerpací pumpě 5 litrů benzínu, který záhy vylila do umyvadla a zapálila. Mohlo se Terce některý den udělat nedobře v důsledku jejich kratochvílí? Aneb jak se v obou případech změní teplota, tlak a koncentrace kyslíku v ubikaci, pokud tato je dokonale neprodyšná, tepelně izolovaná a rozměrů 3 × 3 × 4 m?

Mára vykecal příhodu Terky J.

3. Série 24. Ročníku - 3. čichač Aleš

Aleš má na koleji na poličce neprodyšně uzavřenou válcovou průhlednou nádobu s toluenem, z 90 % plnou. Aleš si svůj toluen pochopitelně bedlivě střeží. Když se po víkendu vrátil na kolej, všiml si, že se hladina toluenu v nádobě o kousíček snížila a okamžitě obvinil spolubydlícího šnEka z krádeže. Až posléze si uvědomil, že o víkendu začali topit a teplota v ubikaci tudíž stoupla o 20° C. Rozřešte tento detektivní příběh a zjistěte, zda šnEk skutečně čichal toluen. Jinak řečeno: Jak velký pokles hladiny mohla způsobit změna teploty? Mohl by si takového poklesu Aleš vůbec všimnout? K řešení lze použít data uvedená na http://en.wikipedia.org/wiki/Toluene_(data_page).

Mára při plnění nádobky toluenem.

2. Série 24. Ročníku - 3. překapávač

figure

Lukáš si k psaní protokolů z praktika vařil kávu a mírně si upravil kávovar. Ke dnu nádobky přidělal zahnutou trubičku, na kterou namotal malou topnou spirálku. Spirálka byla ve výšce $d$ nade dnem nádobky (viz obrázek), hladina vody ve výšce $h$. Parametry trubičky a spirálky jsou právě takové, aby pára vzniklá varem vody přiváděné z rezervoáru v nádobce vytlačovala vodu nad sebou nahoru. Spočtěte výkon, který musíme dodávat do spirálky, aby z ústí trubičky ve výšce $l$ vytékala voda. Jaká je účinnost takovéhoto tepelného stroje?

Z nudy zkoušel Lukáš.

1. Série 24. Ročníku - 4. bublifuk

figure

Mára si koupil bublifuk a jal se na balkoně vyfukovat bubliny, venku byl stálý atmosférický tlak $p_{0}$. Když se mu jedna obzvláště povedla (měla poloměr $r$ a hmotnost mýdlové vody byla $m)$, zamyslel se a vypočítal její celkovou tepelnou kapacitu. Učiňte totéž.

Jakub

1. Série 24. Ročníku - P. Edudant a Francimor

Dva světaznalí cestovatelé, jeden tlustý a jeden hubený, se cestou v letadle dohadují o tom, kdo z nich by déle přežil v extrémních podmínkách daleko od civilizace. Rozsoudíte je, kdo vydrží déle ve velkém horku (50 °C), v mrazu (-1 °C), po ztroskotání lodi uprostřed Středozemního moře, v hurikánu nebo při silném sněžení? A jak by to mohlo dopadnout, kdyby je zastihlo mohutné zemětřesení v centru velkoměsta? Kromě jejich tělesné stavby mezi nimi nejsou žádné rozdíly, oba jsou stejně oblečení a nic dalšího s sebou nemají (žádné jídlo, vodu, sirky ani jiné vybavení). Snažte se být nápadití a všímejte si i maličkostí.

Ve známém televizním pořadu viděl Honza P.

4. Série 23. Ročníku - 2. horečka

Janap šla domů z hvězdárny a při pohledu na východ Slunce ji napadlo, jak by asi jednoduše šla spočítat jeho teplota. Prozradíme vám, že Země je absolutně černé těleso s teplotou $0\, \jd{^{o}C}$.

na přednášce ze statistické fyziky řešila Janap

4. Série 23. Ročníku - E. MacGyver a teploměr

Z materiálů, které máte doma k dispozici, zkonstruujte funkční teploměr a pomocí vhodných známých teplot nakalibrujte jeho stupnici. Nezapomeňte nám poslat fotografii výsledku vašeho snažení.

Parkinsonem onemocněl Honza Hermann

1. Série 23. Ročníku - 3. adiabatický invariant

figure

Mezi dvěma zarážkami se po přímce rovnoměrně pohybuje hmotný bod o hmotnosti $m$ rychlostí $v$. Jednu ze zarážek začneme oddalovat rychlostí $v_{1}<<v$. Jak se změní energie hmotného bodu?

Na Zajímavé teoretické fyzice nespala Janap.

1. Série 23. Ročníku - E. fridex

Organizátoři jedou na severní pól. Mají motorové saně a i přes třeskuté mrazy okolo točny musí lít do chladiče Fridex. Poraďte jim, jakou mají volit směs alkoholu s vodou, to znamená, určete, jaká je závislost teploty tuhnutí směsi alkoholu s vodou na jeho koncentraci. Nemáte-li dostatečně výkonný mrazák, změřte, při jaké koncentraci směs zmrzne při nějaké pevně dané teplotě.

Ze svých cest po Sibiři přivezl Jarda.

1. Série 23. Ročníku - P. teploměr

Kapilára lékařského rtuťového teploměru je pod stupnicí zaškrcená, aby se rtuť nemohla vracet do baňky a my mohli v klidu odečíst změřenou teplotu. Jak jistě víte, od června je zakázán prodej rtuťových teploměrů. Při této historické příležitosti se zamyslete, proč je zúžené místo pro rtuť průchodné pouze jedním směrem při ohřívání a proč se stejným způsobem nemůže rtuť při ochlazení zase samovolně vrátit do baňky.

Při horečce chtěl podvádět Honza Prachař.

6. Série 22. Ročníku - 4. kámen na pístu

figure

Marek má píst o rozměru $S$ s ideálním plynem v rovnovážném stavu ($p$, $V$ a $T)$. Na tento píst z výšky $h$ pustí kámen o hmotnosti $m$ (viz obrázek). Píst se stlačí a opět vrátí do nějaké polohy zpět. Jak závisí tato poloha na hmotnosti kamene a výšky, ze které byl upuštěn? Je možné, že se píst ustálí ve vyšší poloze než byl prve? Jak se změní teplota plynu v pístu?

vymyslel Mára po přednášce z termodynamiky

2. Série 22. Ročníku - P. milenecká

Jak se změní teplota pod peřinou, pokud jsou pod ní dva lidé místo jednoho?

vymyslel zmrzlý milovník Honza P.

6. Série 21. Ročníku - 2. vaření hada

Ubohý pterodaktyl ze své klece s obavami pozoruje divokou zvěř v okolní džungli. Zejména ho zaujal párek bezstarostných hadů, kteří se chystali vlézt do jeho klece. Věznitelé je však neúprosně sevřeli klacky tvaru písmene Y. Z hadů bude výborná večeře, malou radost z toho má i pták FYKOSák, ačkoliv dává přednost jinému než hadímu masu.

Tuhé maso jedovatých hadů se musí vařit při vyšší teplotě, k tomu se používá papiňák. Nádoba se naplní z poloviny vodou, v druhé polovině zůstane vzduch, potom se uzavře a pomalu zahřívá (na rozdíl od obyčejného papiňáku je nádoba skutečně uzavřená – nemůže unikat vzduch ani pára). Při jaké teplotě se začne voda v hrnci vařit? V jakých fázích voda existuje při rostoucí teplotě?

Sbírka od Dalimila Mazáče.

4. Série 21. Ročníku - 2. zahřívání koule

V této úloze budeme studovat vliv teploty na moment setrvačnosti kovového tělesa. Pro tento účel necháme tělesem procházet pevnou osu, kolem které se bude otáčet. Jak se změní moment setrvačnosti $J$ tělesa při zvýšení jeho teploty o $ΔT$, je-li koeficient teplotní roztažnosti kovu $α$. Pokud si nevíte rady, zkuste uvažovat kouli nebo válec.

V Havránkovi se úloha líbila Pavlu Motlochovi.

5. Série 20. Ročníku - P. co je to za okna?

Nedávno si nechal jeden z organizátorů doma vyměnit okna. Místo starých dřevěných přišla nová plastová s dvojitými skly. Okna se dodávají v několika variantách podle toho, jestli je prostor mezi skly evakuován anebo naplněn některým ze vzácných plynů. Navrhněte způsob, jak zjistit, kterou variantu organizátorovi dodali, ovšem bez trvalých následků na oknech.

Problém ze života Michaela Komma.

3. Série 20. Ročníku - 4. topení Alberta Einsteina

Albert Einstein se v důchodovém věku (narozdíl od svých vrstevníků šťourajících se v zahrádce) zamýšlel nad různými paradoxními jevy. V zimě si všiml, že když ohřívá vodu v topení přímo ohněm, účinnost je velmi malá.

Napadlo ho vyzkoušet jiný postup. Vzít ideální tepelný stroj a použít kotel a venkovní vzduch jako teplou a studenou lázeň. Práci, kterou z tohoto stroje získá, pak vložit do jiného ideálního tepelného stroje, který bude odebírat teplo vzduchu a předávat jej vodě. Jestliže jsou teploty kotle, vody a vzduchu $T_{1}$, $T_{2}$ a $T_{3}$, jaká je účinnost ohřevu vody? Nedochází náhodou k porušení druhého termodynamického zákona?

Úlohu navrhl Matouš Ringel.

5. Série 19. Ročníku - 2. Pet u okna

U okna ve vytopeném pokojíku stojí uzavřená prázdná PET láhev. Za oknem mrzne, až praští. Ráno maminka otevřela okno, aby místnost důkladně vyvětrala, jenže při vaření oběda na to zcela zapomněla, a v pokojíku tak klesla teplota pod bod mrazu. Určete relativní změnu objemu láhve, která stojí na okně.

Úlohu vymyslel Jano Lalinský.

5. Série 19. Ročníku - 3. účinnost elektrárny

Vypočítejte účinnost stroje, který pracuje mezi dvěma tepelnými lázněmi o teplotách $T_{1}$ a $T_{2}$, $T_{1}>T_{2}$ a který dosahuje maximálního možného výkonu. Do výsledného vztahu potom dosaďte data některé známé elektrárny.

Uvědomte si, že Carnotův stroj má nulový výkon, protože při izotermickém ději je rozdíl teplot mezi strojem a lázní nekonečně malý, což způsobí nekonečně malý tepelný tok a nekonečně malý výkon stroje.

Úloha z knížky Herberta Callena.

5. Série 19. Ročníku - E. babiččiny palačinky

Rozehřejte pánvičku na plotýnce nebo nad plamenem tak, aby se na ní daly smažit palačinky (asi na 200° C). Pokud na její suchý rozžhavený povrch cáknete kapičku vody, hned se nevypaří, ale bude po něm až minutu rejdit. Proměřte dobu rejdění v závislosti na velikosti kapičky a tento jev se pokuste vysvětlit.

Úlohu navrhl Jan Lalinský.

4. Série 19. Ročníku - 2. výprava na planetu Balónků

NASA chystá velkou výpravu na planetu Balónků za účelem navázání komunikace s tamními inteligentními dutými bytostmi. Špiónům se podařilo zjistit od místních informátorů následující údaje: atmosféra je složena z plynu o muškové hmotnosti 10001 luftíků na mušku, počet molekul atmosféry v jedné mušce je $10^{1101}$, tloušťka atmosféry je $10^{10001}$ špurglů a srovnáním teploměrů obou civilizací špióni určili, že sedmi pozemským kelvinů odpovídá jeden luftík krát špurgl čtverečný na temp čtverečný.

Určete teplotu na povrchu planety a rozhodněte, zda by si měli kosmonauti vzít spíše tričko či kožich. Při řešení se vám můžou hodit i údaje z již zmíněné soutěže.

Úloha ze starého ročníku FYKOSu.

4. Série 19. Ročníku - P. Balónek uprchlík

figure

Na planetě Balónků došlo k revoluci a k moci se dostali fundamentalisté, kteří zakázali jíst traverzy se šlehačkou. Jelikož šlo o Funíkovo oblíbené jídlo, nezbylo mu nic jiného, než odejít do dobrovolné emigrace.

Při příletu na Zem byl Funík zavřen do karantény a byl mu změřen objem $V$ a teplota $T$. Imigrační úřad však rozhodl, že nedostane azyl, pokud nezmění svůj objem na $V′$ a teplotu na $T′$. Funík nemůže v karanténě přijímat ani odevzdávat žádné teplo, měnit počet částic, ze kterých je složen, i na traverzy se šlehačkou si prozatím musí nechat zajít chuť. Poraďte Funíkovi, jak to má udělat, aby mohl na Zemi prožít šťastný a spokojený život.

Problém Matouš slyšel na přednášce prof. Koteckého a vymyslel řešení.

3. Série 19. Ročníku - 3. odložená koupel

Robin se rozhodl, že se po půl roce vykoupe. Napustil si vanu teplou vodou o teplotě $T_{1}$ a objemu $V_{1}$. Ke koupání ale zase nedošlo. Napadlo ho, že je to zbytečné plýtvání energií, teplo z vany totiž lze použít i lépe.

Robin je šikovný a umí si vyrobit libovolný tepelný stroj, proto si už dávno chtěl izotermicky stlačit plyn o teplotě $T$, objemu $V_{0}$ a hustotě $ρ$. A tady k tomu dostal ideální příležitost. Jako chladič použil okolní vzduch, jehož množství je nevyčerpatelné a jehož teplota je $T_{2}$. Určete, na jaký minimální objem $V$ lze tento plyn stlačit, použije-li k tomu Robin teplou vodu ve vaně a svůj tepelný stroj.

2. Série 19. Ročníku - 4. tepelná vodivost kovu

Odvoďte, jakým způsobem závisí tepelná vodivost kovu na teplotě, pokud znáte závislost jeho elektrické vodivosti na teplotě.

Pro vodivostní elektrony můžete použít model ideálního plynu, tj. elektrony se pohybují volně (přítomnost iontových zbytků vůbec neuvažujeme) a přímočaře až na občasné srážky s jinými elektrony, které změní směr i velikost jejich rychlosti.

Teplo přenesené krystalovou mřížkou kovu je zanedbatelné oproti teplu přenesenému vodivostními elektrony. Každý elektron má tepelnou kapacitu $c$, která nezávisí na teplotě.

Honza při čtení Ashcrofta.

4. Série 18. Ročníku - E. čaj po večeři

Organizátoři FYKOSu popíjeli v menze po večeři výborný čaj. Protože jsou to zvídaví lidé, zamysleli se někteří z nich nad procesem chladnutí čaje. Předmětem sporu bylo, do jaké míry přispívají k chladnutí čaje procesy vypařování, vedení tepla a vyzařování. Pokuste se stejný problém řešit experimentálně.

Navrhl Jirka Franta.

4. Série 17. Ročníku - 1. stavový výtah

Mějme uzavřenou svisle postavenou válcovou nádobu s pohyblivým pístem, jehož hmotnost nemůžeme zanedbat. Při teplotě $t = 0\, \jd{^{o}C}$ je objem plynu nad pístem dvakrát větší než objem plynu pod pístem. Určete poměr objemů plynů při teplotě $t = 100\, \jd{^{o}C}$, víte-li, že jejich látková množství jsou stejná.

Ze cvičení z fyziky zná Jirka Lipovský.

1. Série 17. Ročníku - E. absolutní nula

S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme vám, že pro měření můžete využít například vlastností ideálního plynu.

Vymyslel Pavel Augustinský.

6. Série 16. Ročníku - P. elektromagnetický paradox

Na dielektrický disk volně se otáčející kolem své osy přilepíme závit supravodivého drátu v němž teče proud $I_{0}$. Dále kolem tohoto závitu symetricky přilepíme elektricky nabité kuličky o náboji $q$. Celý disk poté začneme pomalu zahřívat. V jistém okamžiku přestane být drát supravodivý, takže v něm přestane téct proud a změní se magnetický tok přes závit. V důsledku toho vznikne podle Faradayova zákona okolo tohoto závitu elektrické pole, které bude působit na přilepené náboje, takže se celý disk začne otáčet. Na druhou stranu musí zůstat podle zákona zachování hybnosti v klidu. Tak kde je v předcházejících úvahách chyba?

5. Série 16. Ročníku - E. paradox zmrzlináře

Traduje se historka, že jeden zmrzlinář, když potřeboval rychle vyrobit led, dával do mrazáku ohřátou vodu místo studené. Ověřte, zda je skutečně možné, aby na počátku teplejší voda zmrzla rychleji než stejné množství vody studené. Specifikujte při jakých podmínkách se to může stát.

5. Série 15. Ročníku - 2. varhany

Představte si cínovou varhaní píšťalu, která byla naladěna při teplotě trojného bodu vody na komorní A. Poté se kostel vytopí (ne vodou) na $25 ^{o}\,\jd{C}$, určete o kolik se píšťala rozladí.

Podle svých hudebních zkušeností navrhl Slavo Nemšák.

4. Série 15. Ročníku - 2. radiátory

V bytě jsou tři radiátory. Voda tekoucí v prvním má teplotu $75 ^{o} \,\jd{C}$, voda ve třetím $40 ^{o} \,\jd{C}$. Jakou teplotu má prostřední radiátor? Teplota vzduchu v pokoji je $20 ^{o} \,\jd{C}$. Všechny radiátory jsou stejné a ztráty v potrubí jsou zanedbatelné.

4. Série 15. Ročníku - 3. světelný motor

Uvažujte Carnotův cyklus (adiabatický–izotermický–adiabatický–izotermický děj) s tepelným elektromagnetickým zářením. Stavová rovnice pro tepelné záření má tvar $p = 1/3 u(T)$, kde $p$ je tlak záření a $u$ je jeho hustota energie, která závisí pouze na jeho termodynamické teplotě $T$. Pro adiabatický děj s tepelným zářením platí $pV^{4/3} = const.$ Vypočítejte účinnost tohoto cyklu jako funkci $u(T_{1})$ a $u(T_{2})$, kde $T_{1}$ je teplota ohřívače a $T_{2}$ teplota chladiče. Pro libovolný Carnotův cyklus je jeho účinnost dána vztahem $1 – T_{2}/T_{1}$. Porovnáním těchto vztahů pro účinnost cyklu odvoďte, že hustota energie záření $u$ je přímo úměrná $T^{4}$.

Navrhl Karel Kolář.

4. Série 15. Ročníku - E. led

Dáme-li skleničku naplněnou částečně vodou do mrazáku, budeme ji mít za chvíli plnou ledu. Jeho povrch však nebude rovný, ale vypuklý. Zjistěte, proč tomu tak je a vypočtěte alespoň přibližně úhel, který bude svírat povrch ledu s vodorovnou rovinou. Porovnejte tento výsledek s experimentální hodnotou.

2. Série 15. Ročníku - 4. rezonanční obvod

Na obrázku je znázorněno zařízení, jímž lze měřit malé změny délky. Hlavní částí je vzduchový rovinný kondenzátor. Mění-li se délka vzorku, mění se vzdálenost desek kondenzátoru, a tedy i rezonanční frekvence $LC$-obvodu, kterou lze snadno měřit.

Uvažme, že před experimentem byla délka vzorku $l_{0} = 10,0 \,\jd{cm}$, vzdálenost desek kondenzátoru $d_{0} = 1,00 \,\jd{mm}$ a frekvence $f_{0} = 50,0 \,\jd{kHz}$. Pak byla teplota vzorku zvětšena o $\Delta t = 110 ^{o}\,\jd{C}$ a frekvence se snížila o $\Delta f = 950 \,\jd{Hz}$. Spočtěte koeficient teplotní délkové roztažnosti vzorku.

Při prohledávání starých sbírek úloh zaujalo Honzu Houšťka.

2. Série 15. Ročníku - P. chladič

Představte si chladič, který jistě používáte v chemických laboratořích. Jsou to dvě souosé trubky, mezi nimi teče chladicí kapalina, ve vnitřní trubce teče kapalina chlazená. Naší otázkou je, zda je chlazení kapaliny účinnější, tečou-li kapaliny proti sobě či souběžně. Nezapomeňte popsat, za jakých zjednodušujících předpokladů úlohu řešíte.

Úlohu na jednoduché zamyšlení navrhl Lukáš Smiedt, později se ukázalo, že to tak jednoduché nebude.

1. Série 15. Ročníku - E. tání ledu

Připravte si různě veliké ale geometricky podobné kusy ledu (kostky, koule,…) a změřte závislost rychlosti jejich tání ve vodě (pokud možno stálé teploty) na jejich velikosti. Výsledky se pokuste interpretovat.

Úlohu vymyslela Lenka Zdeborová.

6. Série 14. Ročníku - 3. galaxie

Začátkem století existoval kosmologický model vesmíru, podle kterého byl vesmír homogenní (v každém místě stejný) a izotropní (v každém směru stejný). Takový vesmír v sobě zahrnoval rovnoměrně rozmístěné galaxie. Předpokládejme, že všechny galaxie jsou co do množství vyzařovaného světla stejné. Spočtěte, kolikrát více galaxií uvidíme, jestliže se místo pouhým okem budeme koukat na oblohu triedrem, kterým lze pozorovat objekty s magnitudou až 8,5.

Magnitudou se v astronomii měří jasnost objektu. Čím větší magnituda, tím slabší objekt vidíme. Slunce má −27 magnitud, Měsíc v úplňku $-13^{mag}$, nejjasnější hvězdy $0^{mag}$ a nejslabší hvězdy viditelné pouhým okem mají 6 magnitud. Pomoci vám může Pogsonova rovnice, která porovnává magnitudy a pozorované intenzity dvou objektů:

$$m_{1}-m_{2}=-2,5\log{\frac{I_{1}}{I_{2}}}$$

Zamyslete se nad tím, jak se změní řešení, když budou galaxie vyzařovat různá množství světla.

Vymyslel Pavol Habuda.

4. Série 14. Ročníku - 3. měděný drát

Máme $50\, \jd{kg}$ mědi. Jaký nejdelší drát z tohoto množství materiálu lze vytvořit pro přenášení elektrického proudu $1 \jd{A}$, je-li okolní teplota $20\jd{^{\circ}C}$? (Tepelnou kapacitu okolního vzduchu a přírody považujte za nekonečnou.)

Úlohu navrhl Miroslav Panoš.

4. Série 14. Ročníku - S. draci

 

  • Vžijte se do role prince, který se chystá useknout drakovi hlavu.

Má dlouhý těžký meč. Jakým místem meče má vést úder, aby ho náraz nepraštil do ruky? Meč můžete považovat za homogenní, nebo navrhnout lepší model.

  • Vymyslete co nejreálnější model, jak draci chrlí oheň. (Slovem nejreálnější nemyslíme návrhy jako „Drak má v žaludku PB–láhev“ a podobné.)

Pokud nevěříte, že draci existují, můžete místo toho vymyslet, jak poznat směr rotace turbíny ve vysavači (aniž byste ho rozebírali).

  • Napište nám své návrhy na obsah dalších dílů seriálu.

Zadali autoři seriálu Lenka Zdeborová a Honza Houšťek.

2. Série 14. Ročníku - P. problémovka z vody

O prázdninách byli někteří organizatoři FYKOSu sjíždět Vltavu a při této příležitosti je napadlo několik problémků, se kterými by od vás potřebovali poradit.

  • Za jak dlouho doteče voda z Českého Krumlova do Prahy?
  • Na jakou stranu alumatky (hliníkové karimatky, která má z jedné strany hliníkovou fólii a z druhé izolační pěnu) je výhodné si lehnout?
  • Jak se v makarónech dělají díry?

Autor Lenka Zdeborová, inspirace: jak jinak než prázdninová Vltava.

5. Série 13. Ročníku - 2. supertermoska

Princip termosky je následující: Máme dvě souosé válcové stěny, které se vzájemně nedotýkají, mezi nimi je vyčerpán vzduch. Energie se zde může přenášet pouze zářením. Pro naše účely budeme stěny termosky považovat za absolutně černá tělesa (ve skutečnosti tomu tak nebývá). Teplotu vnitřní stěny označíme $T_{1}$, teplotu vnější $T_{2}$. Tyto teploty budeme dále považovat za konstantní. Odtok tepla (za jednotku času) v tomto jednoduchém případě nechť je $Q_{0}$. Vlastnosti termosky však můžeme vylepšit, vložíme-li mezi stěny ještě jednu dokonale vodivou (absolutně černou) válcovou desku. Určete, jak se změní odtok tepla po ustálení teploty vložené desky. Ve vylepšování můžeme pokračovat… Spočtěte, jak se odtok tepla změní, vložíme-li $n$ vzájemně se nedotýkajících válcových desek. (Vzdálenosti krajních desek jsou malé oproti rozměrům termosky, velikosti jejich povrchů můžeme tedy považovat za stejné.)

5. Série 13. Ročníku - P. zamrzání rybníku

Odhadněte, za jak dlouho naroste led na rybníce z deseti centimetrů na dvacet. Teplota vzduchu je stále pět stupňů pod bodem mrazu. Potřebné konstanty naleznete v tabulkách.

1. Série 13. Ročníku - 3. zahřívání

Do nádoby s vodou dáme ponorný ohřívač a zapneme jej do zásuvky. Závislost teploty na čase po zapnutí ohřívače vidíme na grafu na obrázku. Poté, co teplota dosáhne $60 ^ {\circ}\,\jd{C}$ (trvalo to tři minuty), ohřívač vypneme. S pomocí grafu odhadněte, za jak dlouho nádoba s vodou vychladne na $50 ^{\circ}\,\jd{C}$. A za jak dlouho na $30 ^{\circ}\,\jd{C}$? Tepelnou kapacitu a tepelnou setrvačnost ohřívače neuvažujte.

1. Série 13. Ročníku - E. měrná tepelná kapacita

Vaším úkolem je změřit měrnou tepelnou kapacitu vody. Metodu měření si můžete vybrat sami, lze například měřit rychlost vzrůstu teploty vody ohřívané ponorným vařičem nebo měřit změnu teploty vody při ponoření tělesa o známé teplotě a tepelné kapacitě, vaší vynalézavosti se však meze nekladou.

1. Série 13. Ročníku - S. pásová teorie

Určete, kolikrát méně elektronů je ve vodivostním pásu typického izolantu (šířka zakázaného pásu je $10 \,\jd{eV}$), než v případě polovodiče (šířka zakázaného pásu křemíku je $1,12 \,\jd{eV}$) při pokojové teplotě. Předpokládejte, že v limitě vysokých teplot se koncentrace vyrovnají. Jak se tento poměr změní při zahřátí izolantu i polovodiče na teplotu $500 \,\jd{K}$?

4. Série 12. Ročníku - 1. hokejista

Hokejista jede po ledě jen po jedné brusli. Led, který má hustotu $0,9\,\jd{ g\cdot cm^{-3}}$ pod bruslí taje do hloubky $h=0,03\;\mathrm{mm}$. Nůž brusle je široký $d=2\;\mathrm{mm}$. Skupenské teplo tání ledu je $λ=3,3\cdot 10^{5}\, \jd{J.kg^{-1}}$. Spočtěte velikost třecí síly mezi bruslí a ledem. Tepelnou vodivost ledu zanedbejte.

4. Série 12. Ročníku - P. v balóně

Vzduch v horkovzdušném balónu je zahříván konstantním příkonem, aby se vyrovnaly tepelné ztráty a balón letěl stále ve stejné výšce. Průměrná teplota vzduchu v balónu je $t=57\;\mathrm{°C}$, teplota okolního vzduchu je $t_{0}=17\;\mathrm{°C}$. Tlak vzduchu v balónu je roven okolnímu tlaku. Pokud zvýšíme příkon hořáku tak, aby teplota v balónu vzrostla o $Δt=0,1\;\mathrm{°C}$, o kolik se změní výška letu balónu?

2. Série 12. Ročníku - 1. papiňák

Máme hrnec o objemu $V=22\;\mathrm{l}$, v němž je dokonale suchý vzduch. Nalijeme do něj kapalnou vodu o hmotnosti $m=18\;\mathrm{g}$. Hrnec poté hermeticky uzavřeme a ohřejeme na teplotu $100 \;\mathrm{^{o}C}$. Kolik vody zůstane v kapalném stavu? Vodní páru považujte za ideální plyn.

1. Série 12. Ročníku - E. var vody

Změřte měrné skupenské teplo vypařování u vody. Předpokládejte, že znáte měrnou tepelnou kapacitu vody a z rychlosti ohřívání spočtěte užitečný příkon vařiče. Nespalte se!

4. Série 11. Ročníku - 3. energeticky úsporný domeček

Stavební firma Krychle staví domy pouze krychlovitého tvaru. Její nejnovější stavba má hranu dlouhou $100\,\jd{ m}$. Jak je možné, že oproti jejich první stavbě (s hranou dlouhou $10\,\jd{ m}$) klesly značně náklady na vytápění jednoho bytu? Kolikrát? Byty se staví stále stejně velké a firma používá stále stejné suroviny.

3. Série 11. Ročníku - 3. káva a mléko

Představte si, že jste zaspali a spěcháte. Uvaříte si kávu a máte 2 minuty na to, abyste ji vypili. Káva je horká a vy potřebujete během zmíněných 2 minut dosáhnout co nejnižší teploty. Kávu pijete samozřejmě s mlékem. Na vás je, abyste rozhodli, dosáhnete-li nižší teploty, když necháte kávu 2 minuty chladnout, pak do ní nalejete mléko a nebo mléko nalejete co nejdříve? Nebo je výhodnější nalét mléko někdy v průběhu chladnutí? Mléko má samozřejmě pokojovou teplotu.

Poznámka: Předpokládejte, že předané teplo je přímo úměrné rozdílu teplot tělesa a okolí, teplota tělesa se tedy bude exponenciálně přibližovat teplotě okolí.

2. Série 11. Ročníku - E. kadeřnictví v rukou fyzika

Změřte pomocí fénu (ručního elektrického vysoušeče vlasů) tepelnou kapacitu vzduchu.

Poznámka: Připomínáme, že experimentální úloha je od slova experimentovat. Proto neváhejte a místo teoretických výpočtů se chopte fénu a opravdu si to zkuste. Kromě experimentálních zážitků budete oceněni i tím, že experimentální úloha je hodnocena tradičně více, než ostatní úlohy.

1. Série 11. Ročníku - 4. grant strýčka Skrblíka

figure

Zlepsovak 1

figure

Strýček Skrblík se jednou doslechl o perpetuech mobile a vytušil příležitost, jak ještě více zbohatnout. Vypsal grant na vymýšlení „věčných strojů“, ale jediní, kdo se přihlásili, byli jeho synovci. Přinesli strýčkovi následující tři nápady:

  • Základem prvního perpetua je válec, který je dutý, vodotěsný a je upevněn v ose na valivých ložiscích. Obrázek nám objasní funkčnost stroje. Na obě části válce sice působí tíhová síla $G$, ale část $B$ je vůči části $A$ válce nadlehčována vztlakovou silou $V$ dle Archimédova zákona. Válec se bude otáčet a jeho rotační energii převedeme na elektrickou energii.
  • Pokud zahřejeme kapalinu, zvětší svůj objem. Zároveň víme, že kapalina je nestlačitelná. Proto budeme kapalinu zahřívat a ochlazovat, změnu jejího objemu převedeme na mechanickou energii a tu na energii elektrickou. Část takto obdržené energie využijeme na zahřívání kapaliny (ochlazení kapaliny zajistí okolní prostředí, odborně „lázeň“). Zbytek energie roztočí stroje ve Skrblíkových továrnách.

* Do nádoby s vodou je zasunuta kapilára. Díky kapilárním jevům voda naplní celou kapiláru a z horního zahnutého konce odkapává dolů, jak je to vidět na obrázku. Dole je umístěna vodní turbína, která je roztáčena padající vodou, a tak může konat práci.

Strýček se nadšeně pustil do výroby těchto strojů, jaké však bylo jeho zklamání, když zjistil, že ani jediný z nich nefunguje. Od té doby už o žádných „perpetech“ nechce ani slyšet.

Na vás teď je, drazí řešitelé, abyste se pokusili vysvětlit, proč žádný z nápadů synovců strýčka Skrblíka nemůže fungovat jako perpetuum mobile.

1. Série 11. Ročníku - P. je narušen druhý termodynamický princip?

figure

Mějme aparaturu, jejíž schéma je na obrázku. Molekuly opouštějící nádobu s plynem $A$ (teplota $T_{A}$, střední kvadratická rychlost molekul $v_{A})$ tvoří molekulární svazek, jež dále prochází rychlostním filtrem $F$. Pouze částice s rychlostí $v_{F}$ proletí až do nádoby $B$. V prostoru mezi deskami filtru je vakuum, střední volná dráha molekul je větší než rozměr aparatury. Při vhodné volbě rychlosti $v_{F}$ ($v_{F}$ > $v_{A})$ bude teplota nádoby $B$ vyšší než nádoby $A$. Tudíž teplo z tělesa chladnějšího ($A)$ bude přecházet na těleso teplejší ($B)$, což je ve sporu s druhým principem termodynamiky. Vaším úkolem je vysvětlit (ne)správnost této úvahy.

6. Série 9. Ročníku - 1. gejzír na betoně

Jednoho krásného dne se studentíci na jednom nejmenovaném gymnáziu nudili, a tak si vymysleli zábavu. Do igelitového pytlíku nabrali vodu a vyhodili jej z okna. Na betonovém chodníku to udělalo krásný gejzír. Ale co čert nechtěl – zrovna přišel do třídy profesor fyziky a zeptal se jich: „Z jaké výšky byste museli vyhodit ten pytlík z okna, aby vám ta voda přešla do varu?“ No, a my se vás ptáme na totéž. Můžete zanedbat odpor vzduchu, popřípadě zauvažovat, co by se stalo, kdyby tam odpor vzduchu byl.

6. Série 9. Ročníku - 3. kap, kap

Jistě se vám už někdy stalo, že jste při vaření ukápli na mírně horkou plotýnku či pánev kapku vody. Potom jste si mohli kromě nepříjemného sykotu všimnout, že chvilku kapka poskakuje po plotýnce, a pak velice rychle zmizí. Jak to, že se menší kapka vypařuje rychleji než kapka větší?

5. Série 9. Ročníku - 4. baron Prášil

Na ledovou plochu rybníka o teplotě $0\;^\circ\textrm{C}$ dopadne rozehřátá dělová koule o poloměru $R$, měrné tepelné kapacitě $c_{k}$ a teplotě $100\;^\circ\textrm{C}$. Jak hluboko se koule ponoří do ledu, jestliže měrná tepelná kapacita ledu je $c_{l}?$ Předpokládáme, že se veškeré teplo využije na tavení ledu.

5. Série 9. Ročníku - S. teplotní vodivost

Ve vztahu pro tepelnou vodivost $q=Q/(S\textrm{d}t)=-\lambda(\textrm{d}T/\textrm{d}x)$ u tyče spádu teploty $\textrm{d}T/\textrm{d}x$ a průřezu $S$ a se pokuste najít vyjádření pro konstantu $\lambda$, pokud tyčí projde za čas $\textrm{d}t$ teplo $Q$.

Nápověda: střední energii jedné molekuly lze vyjádřit jako $u=m_{0}c_{v}T$.

4. Série 9. Ročníku - S. srážející se molekuly

Při odvození rovnice plynu jsme neuvažovali nárazy molekul na sebe navzájem. Pokuste se říci, ve kterém bodě našich úvah je třeba tento problém diskutovat a diskutujte ho.

Nápověda: Při diskusi použijte pojem střední volné dráhy molekuly.

3. Série 9. Ročníku - 4. lednička

V místnosti stojí otevřená lednička zapojená do zásuvky a mrazí. Po jedné hodině provozu necháme teplotu v místnosti ustálit. Jak se tato teplota liší od počáteční teploty v místnosti, pokládáme-li místnost za tepelně izolovanou?

2. Série 9. Ročníku - E. odpolední čajíček

Pokuste se změřit odpor spirály elektrického vařiče.

Návod: Ohřívejte vodu vařičem a sledujte závislost její teploty na čase. Z této závislosti zjistěte výkon vařiče, ze kterého už snadno naleznete odpor spirály. Zřejmě vám už došlo, že tato úloha je takzvaně experimentální.

2. Série 9. Ročníku - P. Lomonosův průvan

figure

Velký přírodovědec M. V. Lomonosov studoval ve své světově proslulé práci „O volném pohybu vzduchu v dolech“ závislost směru proudění vzduchu na ročním období. Po dlouhém a strastiplném bádání dospěl k závěru, že teplota vzduchu je v dole stále stejná po celý rok. (V jeho době byly doly ještě poměrně mělké.) Určete, jakými směry bude vzduch proudit v létě a v zimě v dolech umístěných podle obr. 4.

2. Série 9. Ročníku - S. Mayerův vztah

Jde o úlohu jednoduchou, ale pokud ji budete chtít řešit, radši si ještě jednou přečtěte text seriálu (i když vás možná trochu nudí) a pokud příklad zdárně vyřešíte, určitě pochopíte, o co v tomto díle seriálu šlo. Tedy:

Odvoďte, jak vypadá 1. věta termodynamická pro izochorický děj ($V=\;\mathrm{konst})$ a určete tím, co znamená výraz $c_{v}=1/n\cdot dU/dT$.

Výsledek po dosazení do jedné z výše uvedených rovnic (snadno naleznete které), nazýváme Mayerovým vztahem.

1. Série 9. Ročníku - 4. tlak plynu

V nádobě, jejíž stěny mají teplotu $t_{c}$, se nachází plyn o teplotě $t$. V kterém případě bude tlak na stěny nádoby větší: $t>t_{c}$ nebo $t<t_{c}?$

5. Série 8. Ročníku - E. chladnutí kapalin

Ve fyzice se často zkoumají tzv. relaxační procesy, tj. postupné ustálení určité fyzikální veličiny na nějaké hodnotě. V termodynamice pod pojmem relaxační doba máme na mysli čas, za který nastane mezi sledovaným systémem a jeho okolím (s nějakou přesností, danou chybou měření nebo fluktuacemi) termodynamická rovnováha. Relaxační doba se samozřejmě mění od procesu, který sledujeme – při vyrovnání tlaků je to asi $10^{-16}\; \textrm{s}$, při různých chemických dějích až měsíce či roky.

Vaším úkolem bude sledovat rychlost chladnutí dvou či více kapalin (např. voda a olej) za stejných okolních podmínek. Aby se vaše práce více podobala skutečnému fyzikálnímu experimentu, proložte naměřenými hodnotami funkci $f(t)=Ae^{-Bt}+T_{0}$ a zkuste interpretovat vypočtené konstanty nebo alespoň odhadněte, na čem by mohly záviset. Pro ty, kdo neví, co je to lineární regrese, je určen krátký odstavec o této metodě.

4. Série 8. Ročníku - 2. jak asi táhne komín

Vertikální roura výšky $h=1\;\mathrm{m}$ s plochou podstavy $S=50\;\mathrm{cm}^{2}$ je z obou stran otevřená. V dolní části roury se nachází ohřívač o výkonu $N=100\; \textrm{W}$. Jaká bude rychlost proudění vzduchu v troubě? Lze předpokládat, že veškerý tepelný výkon ohřívače se spotřebuje na ohřátí vzduchu. Atmosférický tlak je $p_{0}=100\; \textrm{kPa}$, teplota okolního vzduchu $t=20\;\mathrm{°C}$. Molární tepelná kapacita vzduchu při konstantním objemu je $C_{V}=2,5\; \textrm{R}$, kde $R$ je plynová konstanta.

3. Série 8. Ročníku - 3. polytropa na zahřátí

Pod pojmem polytropický rozumíme v termodynamice proces charakterizovaný rovnicí $pV^{α}=\;\mathrm{konst.}$, kde $α$ je daný parametr. Pro vhodné $α$ dostáváme např. izobarický ($α=0$), izotermický ($α=1$) nebo izochorický ($α=∞$) děj. Mějme nejjednodušší případ ideálního jednoatomového plynu. Při jakém polytropickém ději (t.j. pro jakou hodnotu $α$) se v něm zachovává

  • počet srážek atomů v jednotce objemu
  • celkový počet srážek?

2. Série 8. Ročníku - 3. nehoda ve vakuu

Dva kosmonauti se nacházejí v otevřeném mezihvězdném prostoru. Neočekávaně dojde k přetržení přívodní hadice u jednoho z nich a následně úniku veškerého vzduchu ze skafandru. Jeho přítel duchaplně připojí ventil ze svého skafandru na utržený konec hadice. Jenže ouha! Hadice je ucpaná a ke zprůchodnění trubice je třeba přetlaku alespoň $1,1\; \textrm{atm}$. Přitom standardní tlak udržovaný přístroji ve skafandru je roven $1\; \textrm{atm}$. Rozhodnou se k následujícímu kroku: vypnou přívod vzduchu nepoškozeného skafandru a společně se vystaví velmi intenzivnímu záření blízké hvězdy, čímž se jejich teplota zvýší z původních $27^{\circ}\;\textrm{C}$ na $107^{\circ}\;\textrm{C}$. Po vyrovnání tlaku rozpojí hadice a rychle se vrátí do stínu solárního článku, kde jejich teplota klesne k normálu. Jakého tlaku dosáhnou touto operací v poškozeném skafandru?

Poznámka: Komu se zdá tato příhoda příliš fantastická nebo málo vědecká, může stejnou úlohu počítat pro dvě identické nádoby spojené hadicí s jednosměrně propustnou klapkou.

6. Série 7. Ročníku - 1. kombinézy

V Arktidě se potkali dva polárníci, vybaveni různými druhy kombinéz. Při bližším seznamování se ukázalo, že teplota na povrchu kombinézy prvního polárníka je vyšší než u jeho kolegy. Která z kombinéz je teplejší, tj. má lepší izolační vlastnosti?

2. Série 7. Ročníku - E. vzdušná kapacita

Pomocí elektrického vysoušeče vlasů (zkráceně f.é.n.) změřte měrnou tepelnou kapacitu vzduchu.

Poznámka: Dbejte všech bezpečnostních zásad při práci s elektrickými zařízeními, viz ing. František Soukup: Elektřina nepromíjí, Práce – nakladatelství ROH, Praha 1955 (zejm. str. 19–21, 107 a celá kapitola Amatérství-fušérství).

2. Série 2. Ročníku - 4. výška sloupce vzduchu

figure

Barometrická stupnice

V barometrické trubici je sloupec vzduchu. Při teplotě $t_{0}=10^{\circ}\;\mathrm{C}$ je výška sloupce $l_{0}=10\;\mathrm{cm}$. Jaká bude jeho výška při teplotě $t=30^{\circ}\;\mathrm{C}$?

1. Série 2. Ročníku - 4. sloupy ze zlata

Mějme vedle sebe dva zlaté sloupy délky $200\; \textrm{m}$ a průřezu $1\; \textrm{dm}$, jeden z nich je zavěšený a druhý stojí na podložce a oba mají stejnou teplotu $0^{\circ}\; \textrm{C}$. Oběma dodáme stejné teplo $5 \cdot 10^{6}\; \textrm{kJ}$. Budou mít potom stejnou teplotu? Jestliže ne, odhadněte, o kolik se bude lišit. Potřebné údaje si vyhledejte. Tepelné ztráty do okolí zanedbejte.

4. Série 1. Ročníku - 2. lednička

V místnosti stojí otevřená lednička zapojená do zásuvky a mrazí. Po jedné hodině provozu necháme teplotu v místnosti ustálit. Jak se takto teplota liší od počáteční teploty v místnosti? Místnost pokládejte za tepelně izolovanou.

4. Série 1. Ročníku - 4. netradiční ohřívání čaje

Kolik nábojů je zapotřebí k uvaření šálku čaje? K dispozici máte ocelovou polní konvičku o hmotnosti $4\; \textrm{kg}$ a samopal. Náboje mají hmotnost $16\; \textrm{g}$ a rychlost $700\; \textrm{m}\cdot \textrm{s}^{ -1}$.

1. Série 1. Ročníku - 1. tři bazény

figure

Tři nádoby

Mějme tři bazény. V každém z nich plave kus ledu tak, jak ukazují obrázky. Hladina vody sahá vždy přesně po okraj bazénu. Led v bazénu na obr. 1 obsahuje vzduchovou bublinu. V bazénu 2 plave led s dutinou vyplněnou nezmrzlou vodou. Led v bazénu 3 obsahuje kousek železa. Určete, ve kterých bazénech voda po roztání ledu:

  • přeteče
  • poklesne
  • zůstane těsně po okraj

1. Série 1. Ročníku - P. píst

V nádobě uzavřené pohyblivým pístem je ideální plyn. Píst stlačíme z jeho rovnovážné polohy o malou vzdálenost $x$ ($x$ je mnohem menší než výška nádoby $h)$ a pak jej pustíme. Následný děj považujeme za izotermický.

  • Ukažte, že píst bude vykonávat harmonické kmity kolem rovnovážné polohy a najděte jejich frekvenci. (Návod: Uvažte síly působící na píst a jejich analogii se silami působícími na hmotný bod zavěšený na pružině.)
  • Diskutujte oprávněnost předpokladu o izotermičnosti uvažovaného děje.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz