Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (76)biofyzika (18)chemie (19)elektrické pole (65)elektrický proud (69)gravitační pole (74)hydromechanika (133)jaderná fyzika (36)kmitání (50)kvantová fyzika (25)magnetické pole (36)matematika (83)mechanika hmotného bodu (257)mechanika plynů (79)mechanika tuhého tělesa (198)molekulová fyzika (61)geometrická optika (72)vlnová optika (53)ostatní (148)relativistická fyzika (35)statistická fyzika (20)termodynamika (131)vlnění (47)

mechanika hmotného bodu

4. Série 35. Ročníku - 3. kyvadlové nárazy

Dvě malé kuličky jsou upevněny na koncích provázků stejné délky ($l = 42,0 \mathrm{cm}$) a zanedbatelné hmotnosti. Opačné konce obou provázků jsou uchyceny v tomtéž bodě. Kuličky mají stejnou velikost, liší se však materiálem, z něhož jsou vyrobeny; jedna je ocelová ($\rho _1 = 7~840 kg.m^{ - 3}$) a druhá duralová ($\rho _2 = 2~800 kg.m^{ - 3}$). Obě závaží pustíme z klidu s počáteční výchylkou $5 \mathrm{\dg }$, poté dojde k dokonale pružné srážce. Do jaké maximální výšky po ní jednotlivé kuličky vystoupí? Jak to dopadne po druhé srážce?

4. Série 35. Ročníku - 5. vrtulník

Ptáka Fykosáka už unavovalo létat silou vlastních křídel, a proto začal přemýšlet o stavbě vlastního vrtulníku. Vytvořil si jednoduchý model nosného rotoru a chtěl zjistit, s jakou úhlovou frekvencí $\omega $ se má skutečný rotor otáčet. Listy rotoru se zařezávají do vzduchu pod úhlem $45 \mathrm{\dg }$; molekuly vzduchu jsou jimi díky tomu odráženy přímo dolů, čímž vzniká tok hybnosti. Molekuly vzduchu považujte za původně nehybné a srážky s nosnou plochou za dokonale pružné. Účinná část nosné plochy (tj. část skloněná pod úhlem $45 \mathrm{\dg }$ vůči vodorovnému směru) se nachází ve vzdálenosti $r_1 = 50 \mathrm{cm}$ až $r_2 = 6,00 \mathrm{m}$ od osy rotace, průmět listu rotoru do svislého směru má výšku $h = 10,0 \mathrm{cm}$. Fykosákův vrtulník bude mít čtyři takové listy. Kolik otáček za sekundu musí rotor vykonat, aby se vrtulník o hmotnosti $m = 2~500 kg$ právě udržel na místě?

3. Série 35. Ročníku - 2. hrajeme si s klíči

Vašek si rád hraje s klíči tak, že je roztočí na šňůrce a pak si je nechá namotat na ruku. Pro názornost si tuto situaci zjednodušme modelem, kdy máme ve stavu beztíže hmotný bod o hmotnosti $m$ uchycený na konci nehmotného vlákna délky $l_0$. To je druhým koncem připevněno na pevný válec o poloměru $r$. Vlákno napneme tak, že v bodě uchycení představuje kolmici k povrchu válce, a hmotnému bodu udělíme rychlost $\vect {v_0}$ ve směru kolmém jak na osu válce, tak na napnuté vlákno. To se díky tomu začne na válec namotávat. Jak bude záviset velikost rychlosti hmotného bodu na délce nenamotané části vlákna $l$?

Nápověda: Najděte veličinu, která je po celou dobu namotávání konstantní.

Bonus: Za jak dlouho se vlákno celé namotá?

Vašek si hrál při pádu z okna s klíči.

2. Série 35. Ročníku - 1. stíhání světel

Jindra kráčí po dlouhé osvětlené chodbě. Jeho oči jsou ve výšce $1,7 \mathrm{m}$ nad podlahou, osvětlení na stropě je ve výšce $3,4 \mathrm{m}$. Jindra se právě nachází ve vzdálenosti $10 \mathrm{m}$ vodorovně od nejbližšího světla a kráčí rychlostí $3 \mathrm{km\cdot h^{-1}}$ přímo k němu. Na vyleštěné podlaze vidí odraz světla. Jak rychle se v tento okamžik odraz přibližuje k Jindrovi?

Jindra si vzpomněl na chození po chodbě na základní škole.

2. Série 35. Ročníku - 3. model tření

figure

Jaký by byl statický koeficient tření mezi tělesem a podložkou, pokud bychom uvažovali model, ve kterém jsou na povrchu obou těles klínky o vrcholovém úhlu $\alpha $ a výšce $d$? Zkuste porovnat vaše výsledky a reálné koeficienty tření.

Karel se inspiroval u KorSemu.

2. Série 35. Ročníku - 4. čepování čaje

Matěj si chce z várnice natočit čaj do sklenice o hmotnosti $M$. Jednou rukou drží sklenici a druhou rukou ovládá kohoutek, čímž mění objemový průtok čaje. Rychlost výtoku $v$ je konstantní (můžete uvažovat, že rychlost při dopadu do sklenice je stejná). Protože se Matěj nechce moc nadřít, rád by držel sklenici od začátku až do konce čepování konstantní silou. Jaká musí být závislost výtoku na čase, aby se mu to podařilo? Jak dlouho bude trvat, než se sklenice naplní?

Matěj si rád čepuje čaj.

2. Série 35. Ročníku - 5. Shkadov thruster

Před dávnými časy v předaleké galaxii se jedna civilizace rozhodla přestěhovat celou svou sluneční soustavu. Jednou z možností bylo postavit „poloviční Dysonovu sféru“. Tedy konstrukci, která by zachycovala zhruba polovinu záření z hvězdy a odrážela jej všechno jedním směrem. Ideálním tvarem by tak byl rotační paraboloid. Jaký by musel být vztah mezi zářivým výkonem hvězdy, plošnou hustotou takového zrcadla a jeho vzdáleností od hvězdy, aby se mezi nimi udržovala konstantní vzdálenost?

Karel sleduje Kurzgesagt.

1. Série 35. Ročníku - 1. auta

Dvě auta vyjedou ve stejný čas ze stejného bodu rychlostmi $v_1 = 100 \mathrm{km\cdot h^{-1}}$ a $v_2 = 60 \mathrm{km\cdot h^{-1}}$. Je možné, aby se auta od sebe vzdalovala některými z následujících rychlostí? Pokud ano, příslušné situace načrtněte. \[\begin{align*} v_a &= 160 \mathrm{km\cdot h^{-1}}  , & v_b &= 40 \mathrm{km\cdot h^{-1}}  , \\ v_c &= 30 \mathrm{km\cdot h^{-1}}  , & v_d &= 90 \mathrm{km\cdot h^{-1}} \end {align*}\]

Ivo chtěl Dana srazit přesně definovanou rychlostí.

1. Série 35. Ročníku - 3. zastavit na bruslích

Na bruslích se dá brzdit metodou „parallel slide“, při které se nože obou bruslí natočí kolmo na směr pohybu, což výrazně zvýší tření s podložkou. Aby bruslař nespadl, musí se naklonit o úhel $\phi = 35\dg $ od svislého směru. Předpokládejte, že člověk vážící $m = 70 \mathrm{kg}$ je i s bruslemi vysoký $H = 1,8 \mathrm{m}$, přičemž těžiště má ve výšce $h = 1,1 \mathrm{m}$ nad ledem. Spočítejte, na jak dlouhé dráze zastaví z počáteční rychlosti $v_0 = 15 \mathrm{km\cdot h^{-1}}$.

Dodo neumí brzdit na bruslích (já taky ne).

1. Série 35. Ročníku - 4. klesá ke dnu

Kapsle válcového tvaru (Puddle Jumper) s průměrem $d = 4 \mathrm{m}$, délkou $l = 10 \mathrm{m}$ a vodotěsnou přepážkou v polovině délky je ponořena pod hladinu oceánu a rychlostí $v = 20 \mathrm{ft\cdot min^{-1}}$ klesá ke dnu. V hloubce $h = 1~200 ft$ praskne sklo na přední podstavě a příslušná polovina kapsle se zaplní vodou. Jakou rychlostí bude nyní klesat? Za jak dlouho klesne až na dno v hloubce $H = 3~000 ft$? Předpokládejte, že stěny kapsle jsou vůči jejím rozměrům tenké.

Dodo sleduje Stargate Atlantis.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz