Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (66)biofyzika (16)chemie (18)elektrické pole (57)elektrický proud (60)gravitační pole (64)hydromechanika (119)jaderná fyzika (34)kmitání (37)kvantová fyzika (25)magnetické pole (29)matematika (74)mechanika hmotného bodu (208)mechanika plynů (79)mechanika tuhého tělesa (185)molekulová fyzika (58)geometrická optika (64)vlnová optika (45)ostatní (131)relativistická fyzika (32)statistická fyzika (22)termodynamika (117)vlnění (41)

mechanika hmotného bodu

(3 body)4. Série 32. Ročníku - 2. utrhne se

Máme (nehmotný) provázek délky $l$ a na jeho konci kuličku (hmotný bod) s hmotností $m$. Víme, že maximální tíha, co unese, je síla $F = mg$, kde $g$ je místní tíhové zrychlení, ale už nic víc. Provázek upevníme a kuličku budeme držet ve stejné výšce jako je místo upevnění, akorát ve vzdálenosti délky provázku, ale tak abychom ho nenapínali. Kuličku uvolníme a ta se začne vlivem tíhového zrychlení pohybovat. Pod jakým úhlem provázku vůči svislé rovině se provázek přetrhne?

(7 bodů)4. Série 32. Ročníku - 4. trampolína

Dva hmotné body skákaly na trampolíně do výšky $h_0 = 2 \mathrm{m}$. Ve chvíli, kdy oba byly v nejnižším možném místě trajektorie (výchylka $y = 160 \mathrm{cm}$), jeden z nich záhadně zmizel. Do jaké nejvyšší výšky byl druhý vymrštěn? Kruhová trampolína má obvod $o = 10 \mathrm{m}$ a pruží díky $N = 42$ pružinám s tuhostí $k = 1720 \mathrm{N\cdot m^{-1}}$. Trampolínu modelujme $N$ pružinami rozmístěnými rovnoměrně a spojenými ve středu. Hmotnost zmizelého hmotného bodu je $M = 400 \mathrm{kg}$.

(10 bodů)4. Série 32. Ročníku - S. seriál

V závere seriálu ste si určite všimli Lagrangián a diferenciálnu rovnicu, ktoré akoby „spadli z neba“. To nie je vôbec náhoda, veľkou časťou tejto seriálovej úlohy bude tieto dve rovnice odvodiť.

  1. Ukážte, že ak máme pohyb častice v ľubovoľnom centrálnom poli, teda v poli, kde potenciál závisí len na vzdialenosti, bude sa častica zaručene pohybovať len v rovine.
    Návod: Zostavte Lagrangeove rovnice II. druhu pre túto situáciu, použite pri tom vhodné zovšeobecnené súranice. Následne bez ujmy na všeobecnosti položte súradnicu $\theta = \pi /2$ a počiatočnú rýchlosť v smere tejto súradnice nulovú. Zamyslite sa a vysvetlite, prečo je takáto voľba v poriadku a nestratíme pri nej žiadne riešenie.
  2. Zostavte Lagrangián pre hmotný bod pohybujúci sa v rovine v centrálnom poli. Mali by ste dostať ten istý, ako je uvedený v závere seriálu. Pre tento Lagrangián následne nájdite všetky intergály pohybu a pomocou nich nájdite diferenciálnu rovnicu prvého rádu pre premennú $r$. Pre vašu kontrolu, mala by vám vyjsť rovnako ako na konci seriálu.
  3. Zamyslite sa, ako určiť uhlovú vzdialenosť medzi dvoma bodmi na sfére, ak máte zadané ich sférické súradnice. Ukážte to napríklad pre hviezdy Betelgeuze a Sírius, ktorých súradnice si nájdite. Pomôcka: Táto úloha sa dá jednoducho vyriešiť aj bez znalosti sférickej trigonometrie.

(8 bodů)3. Série 32. Ročníku - 5. bodová

Uvažujme hmotný bod umístěný v jednodimenzionálním prostoru. Jeho počáteční pozice i rychlost je nulová. Bod se dokáže pohybovat s libovolným zrychlením z intervalu $\left (- a , a\right )$. Nazvěme $M\left (t\right )$ množinu všech možných stavů $\left (x, v\right )$ takových, že bod se v čase $t$ může nacházet na pozici $x$ a zároveň mít rychlost $v$. Sestrojme graf závislosti $v$ na $x$ v čase $t$. Množina $M\left (t\right )$ v tomto grafu vytvoří plochu $S\left (t\right )$. Analyticky popište křivky ohraničující $S\left (t\right )$.

Bonus: Najděte funkční závislost $S\left (t\right )$.

Jáchym chtěl jistou triviální úlohu řešit jako speciální případ této.

(7 bodů)2. Série 32. Ročníku - 4. lunar lander

Jak má řídící elektronika přistávacího modulu Apolla dávkovat tah $T$ motoru (a tedy regulovat spotřebu paliva) směřující směrem dolů, aby se loď snášela na povrch Měsíce rovnoměrným přímočarým pohybem? Efektivní rychlost spalin motoru je $u$. Loď již zbrzdila svůj pohyb po orbitě a sestupuje přímo dolů v homogenním gravitačním poli se zrychlením $g$. Počáteční hmotnost modulu je $m_0$.

Bonus: Jak má elektronika dávkovat tah při přistání z výšky $h$ a počáteční rychlosti $v_0$, aby přístání bylo tzv. pádem z nulové výšky a minimalizovala se spotřeba paliva? Maximální tah motoru je $T\_{max}$.

(9 bodů)2. Série 32. Ročníku - 5. kladka a pták

Ke stropu je zavěšená pevná kladka a je na ni navlečeno lano tak, aby jeho levý i pravý konec byly ve stejné hloubce. Na jednom konci visí pták Fykosák a na druhém konci závaží, které má stejnou hmotnost jako pták. V počátečním stavu jsou pták i závaží nehybné. Popište, co se bude se soustavou dít, začne-li pták Fykosák lézt vzhůru (po svém vlastním lanu) s použitím konstantní síly. Nejprve předpokládejte, že lano je nehmotné a kladka je ideální. Poté počítejte s délkovou hmotností lana $\lambda $, jeho délkou $l$, momentem setrvačnosti kladky $J$ a jejím poloměrem $r$. Předpokládejte, že lano na kladce neprokluzuje.

Mirek přepsal úlohu od Lewise Carolla do FYKOSího tvaru.

(12 bodů)2. Série 32. Ročníku - E. listopad

Změřte průměrnou vertikální rychlost padajícího listí. Použijte listy z několika různých stromů a diskutujte, jaký vliv má tvar listu na rychlost pádu. Jak by měl vypadat ideální list, pokud bychom chtěli, aby padal co nejpomaleji?

Napadla Jáchyma, když se ptal kamaráda, jestli nezná nějaký zajímavý experiment.

(10 bodů)2. Série 32. Ročníku - S. Zväzujúca

figure

Naklonená rovina

  1. Majme činku tvorenú dvoma hmotnými bodmi s hmotnosťami $m$ a $M$, ktoré sú spojené nehmotnou, ale veľmi pevnou tyčou. Táto činka padá voľným pádom. Napíšte väzbovú podmienku a zároveň aj Lagrangeove rovnice prvého druhu pre tento objekt.
  2. Majme vodorovnú položku, na ktorej je umiestnený pravouhlý trojboký hranol s hmotnosťou $M$ ako na obrázku . Po strane tohto hranolu, ktorá s podložkou zviera uhol $\alpha $, sa skĺzava hmotný bod s hmotnosťou $m$. V celom príklade neuvažujte trenie.
    • Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu.
    • Ukážte, že celková hybnosť sústavy v smere osi $x$ je pri nulovej počiatočnej rýchlosti hmotného bodu nulová.
    • Postupným riešením sústavy rovníc určte veľkosti rýchlostí hmotného bodu a hranolu v závislosti od času.
    • Určte pomer veľkostí týchto rýchlostí.
  3. Majme kyvadlo zavesené na závese. Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu a ukážte, že pre ňu platí zákon zachovania energie.

(3 body)1. Série 32. Ročníku - 2. ohňostroj

Jáchym odpaloval ohňostroj, který si můžeme představit jako světlici, která je v určitý čas vystřelena rychlostí $v$ směrem svisle nahoru, a poté za nějaký čas vybuchne. Jáchym stál ve vzdálenosti $x$ od místa odpalu, když uslyšel zvuk výstřelu. Za čas $t_1$ uviděl výbuch a za čas $t_2$ po zpozorování výbuchu ho i uslyšel. Spočítejte rychlost $v$.

Jáchym v sobě pyrotechnika nezapře.

(7 bodů)1. Série 32. Ročníku - 4. pád z okna

Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.

Nápověda: Pro radu jděte k panu Dopplerovi.

Matěj se rád dívá z ok(n)a.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz