Vyhledávání úloh

astrofyzika (46)biofyzika (13)chemie (11)elektrické pole (46)elektrický proud (52)gravitační pole (49)hydromechanika (84)jaderná fyzika (27)kmitání (32)kvantová fyzika (19)magnetické pole (25)matematika (63)mechanika hmotného bodu (150)mechanika plynů (70)mechanika tuhého tělesa (141)molekulová fyzika (41)geometrická optika (56)vlnová optika (35)ostatní (102)relativistická fyzika (25)statistická fyzika (20)termodynamika (90)vlnění (31)

(7 bodů)1. Série 32. Ročníku - 4. pád z okna

Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.

Nápověda: Pro radu jděte k panu Dopplerovi.

(3 body)5. Série 31. Ročníku - 1. schodisko na Mesiaci

Pokud bychom jednou kolonizovali Měsíc, bylo by vhodné na něm používat schody? Představte si na Měsíci klesající schodiště s výškou schodu $h=15 \mathrm{cm}$ a délkou $d=25 \mathrm{cm}$. Odhadněte počet schodů $N$, které by přeletěl člověk, jestliže před vstupem na schody šel rychlostí $v=5{,}4 \mathrm{km\cdot h^{-1}}=1{,}5 \mathrm{m\cdot s^{-1}}$. Tíhové zrychlení na povrchu Měsíce je šestkrát slabší než na povrchu Země.

Dodo čítal Mesiac je drsná milenka.

(5 bodů)5. Série 31. Ročníku - 3. klín

figure

Klíny

Máme dva klíny o hmotnostech $m_1$, $m_2$ a úhel $\alpha $ (viz obrázek). Vypočítejte zrychlení levého klínu. Předpokládejte, že nikde nedochází ke tření.

Bonus: Uvažujte tření s koeficientem $f$.

Jáchym vykradl skripta ČVUT.

(8 bodů)5. Série 31. Ročníku - 5. záludná kapka

Mějme kulatou kapku o poloměru $r_0$ tvořenou vodou o hustotě $\rho \_v$, která shodou okolností padá v mlze v homogenním tíhovém poli $g$. Uvažujme vhodnou mlhu se speciálními předpoklady. Tvoří ji vzduch o hustotě $\rho \_{vzd}$ a vodní kapičky s průměrnou hustotou $\rho \_r$, když uvážíme, že se rozptýlí zcela rovnoměrně. Jestliže kapka propadne nějakým objemem takové mlhy, vysbírá všechnu vodu, která se v tomto objemu nachází. Na místě zůstane pouze vzduch. Jaká je závislost hmotnosti kapky na vzdálenosti uražené v takovéto mlze?

Bonus: Řešte pohybové rovnice.

Karel chtěl zadat něco, kde se bude měnit hmotnost.

(6 bodů)4. Série 31. Ročníku - 3. divně tvarovaná nádobka

Máme válcovou skleničku, která má zboku u dna malou díru o ploše $S$. Tato nádoba je naplněná vodou, která samovolně přetéká do druhé nádoby, která je tentokrát již bez díry. Jaký tvar by musela mít druhá nádoba, aby v ní hladina rostla rovnoměrně? Předpokládejte, že má být válcově symetrická.

Bonus: Dna obou nádob jsou ve stejné výšce a nádoby jsou dírou spojené.

Karel se díval, jak se nalévá sklenička na rautu.

(7 bodů)4. Série 31. Ročníku - 5. nemožnost nakažení

Představme si, že roztlačíme nějakou bakterii obvyklé velikosti na rychlost $v = 50 \mathrm{km\cdot h^{-1}}$ ve vodorovném směru a necháme ji volně letět ve vzduchu. Jakou vzdálenost zhruba urazí, než se zastaví?

Výsledek vás možná překvapí. Jak je tedy možné se infikovat tímto způsobem bakteriální infekcí? Diskutujte, proč je to možné i přes takový výsledek.

Karel se díval na Youtube na TED-Ed.

(3 body)3. Série 31. Ročníku - 2. zrychleníčko, zrychlení

figure

Náčrt elipsy

Na obrázku vidíte náčrt elipsy s ohnisky $F_1$ a $F_2$ a několika vyznačenými body na ní. Uvažujte, že elipsa znázorňuje trajektorii nějakého hmotného bodu. Znázorněte do obrázku zrychlení, která působí na hmotný bod v jednotlivých vyznačených bodech dráhy pro dvě situace (jde o směry a vzájemné poměry zrychlení (které je větší/menší) v různých bodech v rámci jednoho náčrtu).

  1. V ohnisku $F_1$ je umístěno hmotné těleso, kolem kterého hmotný bod obíhá. Uvažujeme, že platí 2. Keplerův zákon.
  2. Těleso má konstantní velikost rychlosti, pouze se pohybuje po elipse.

Karel na konferenci slyšel, že s takovými úlohami mají problémy i vysokoškoláci.

(7 bodů)2. Série 31. Ročníku - 5. skleněný déšť

Dělník si na stavbu mrakodrapu přinesl vak se skleněnkami, aby se s nimi mohl pochlubit svým kolegům. A co se nestane – vak se vysype a kuličky padají skrze lešení směrem k zemi. Lešení se skládá z jednotlivých poschodí o výšce $h$. Podlaha každého poschodí se skládá ze stejných mříží, ve kterých díry zaujímají $k  \%$ z celkové plochy mříže. Uvažujme zjednodušený model propadávání kuliček lešením, kdy, pokud kulička spadne na díru v lešení, tak projde bez ovlivnění, a pokud spadne na pevnou část mříže, tak se její rychlost sníží na $0$ a ihned začne dále padat (tj. velikost kuliček je zanedbatelná vůči velikosti děr v lešení, kuličky se od lešení nijak neodráží a po dopadu na pevnou část mříže se ihned skutálí do díry a dále začínají padat). Nakonec neuvažujme ani potenciální srážky kuliček mezi sebou. Předpokládejte, že kuličky se z tašky sypou s konstantním hmotnostním průtokem $Q$. Jakou silou budou kuličky působit na každé patro lešení, až se situace ustálí?

Mirek chtěl převést Ohmův zákon do mechaniky.

(3 body)0. Série 31. Ročníku - 1. trám

Mějme tři pevné body ve stejné výšce. Vzdálenost mezi prvním a druhým je $a = 1 \mathrm{m}$, vzdálenost mezi druhým a třetím je $b = 1,5 \mathrm{m}$. Přes body položíme dokonale tuhý trám s hmotností $m = 12 \mathrm{kg}$. Spočítejte, jaká síla působí na každý z bodů.

(3 body)6. Série 30. Ročníku - 1. dost těžké kulomety

Na auto připevníme dopředu dva kulomety, které vystřelují kulky o hmotnosti $m=25\;\mathrm{g}$ rychlostí $v_{1}=500\;\mathrm{m}\cdot \mathrm{s}^{-1}$, každý s frekvencí $10$ výstřelů za sekundu. Auto se rozjede po rovině rychlostí $v_{2}=80\;\mathrm{km}\cdot \mathrm{h}^{-1}$ a poté začne střílet. Kolik nábojů vystřílíme, než auto zastaví? Během palby nepřidáváme plyn, odpor vzduchu a kol zanedbáváme. Tepelné ztráty uvnitř zbraní jsou taktéž zanedbatelné.

Mirek vzpomínal na GTA 2.

(8 bodů)5. Série 30. Ročníku - 4. na provázku

Dvě závaží zanedbatelných rozměrů o hmotnosti $m=100\; \mathrm{g}$ spojíme pružným nehmotným provázkem o klidové délce $l_{0}=1\;\mathrm{m}$ s tuhostí $k=50\;\mathrm{kg}\cdot\mathrm{s}^{-2}$. Jedno závaží držíme na místě a druhé kolem něj necháme rotovat s frekvencí $f=2\;\mathrm{Hz}$. První závaží se přitom může volně otáčet kolem své osy. V jednu chvíli držené závaží uvolníme. Na jakou minimální vzdálenost se k sobě závaží přiblíží? Neuvažujte vliv gravitačního pole a předpokládejte platnost Hookeova zákona.

(3 body)4. Série 30. Ročníku - 2. ryvové kyvadlo

Je známou skutečností, že aby byla jízda vlakem co nejpohodlnější, pak při rozjíždění a brzdění je potřeba, aby se zrychlení měnilo co nejméně. Proto je dobré, když se vlak rozjíždí s malou konstantní změnou zrychlení. Změna zrychlení se nazývá ryv. Určete, jak se v čase mění stabilní poloha kyvadla (úhel odklonění od svislice $φ$). Délku kyvadla označme $l$, vlak se rozjíždí na rovině, ryv označme $k$ ($k=Δa/Δt$, kde $a$ je zrychlení) a vlak jede po Zemi s normálním tíhovým zrychlením $g$.

Bonus: Sestavte pohybové rovnice, které numericky vyřešte pro $φ(0)=0$ a $dφ/dt(0)=0$ pro různé hodnoty $k$.

Napadlo Karla, když měl psát bakalářku.

(3 body)1. Série 30. Ročníku - 2. brzdná

Petr rád jezdí po rovině na kole rychlostí $v=10\; \mathrm{m}\cdot\mathrm{s}^{-1}$ a jeho chytré kolo hlásí, že Petrův výkon je $P = 100\; \mathrm{W}$. Po nehodě se zkřivily ráfkové brzdy, které teď na kolo působí třecí silou $F_\mathrm{t} = 20\; \mathrm{N}$ u obvodu. Po jakou dobu $t′$ musí teď Petr jet na kole rychlostí $v$, aby vykonal stejnou práci jako předtím za čas $t$?

Petr si uvědomil výhody zaseknuté brzdy.

(7 bodů)1. Série 30. Ročníku - 5. na procházce

Katka si vyšla ráno před přednáškou na procházku, aby vyvenčila svého potkana. Vyšla s ním na rovný palouk, a když byl potkan ve vzdálenosti $x_{1}=50\; \mathrm{m}$ od ní, hodila mu míček rychlostí $v_{0}=25\; \mathrm{m}\cdot\mathrm{s}^{-1}$ pod úhlem $α_{0}$. V okamžiku výhozu potkan vyběhl směrem ke Katce rychlostí $v_{1} = 5\; \mathrm{m}\cdot\mathrm{s}^{-1}$. Nalezněte obecnou závislost úhlu $φ$ na čase, kde $φ(t)$ označuje úhel mezi vodorovnou rovinou a spojnicí potkana a míčku, a vykreslete tuto závislost do grafu. Na základě grafu určete, zda je možné, aby míček zakryl potkanovi Slunce, jenž se nachází ve výšce $φ_{0}=50\; \mathrm{°}$ přímo před potkanem. Počítejte s tíhovým zrychlením $g=9,\! 81\; \mathrm{m}\cdot \mathrm{s}^{-2}$ a pro zjednodušení uvažujte, že házíme z nulové výšky.

Mirek pozoroval, co se děje v trávě.

(4 body)6. Série 29. Ročníku - 3. jedeme z kopce

Autem o hmotnosti $M$ jedeme nahoru do kopce a dolů ze stejného kopce se sklonem $α$ stejnou rychlostí $v$ se zařazeným stejným převodovým stupněm, a tedy stejnými otáčkami motoru. Jaký je rozdíl tažného (do kopce) a brzdného (s kopce) výkonu motoru?

Napadlo Lukáše v kopci směrem na Rumburk.

(4 body)6. Série 29. Ročníku - 4. fire in the hole

Pro ohřev plasmatu ve fúzních zařízeních se používají svazky neutrálních částic. V takovém zařízení se nejprve urychlí ionty deuteria na vysokou energii a následně se přenosem náboje neutralizují, přičemž si zachovávají téměř původní rychlost. Na tokamaku COMPASS mají částice na výstupu ze svazku energii $40\; \mathrm{keV}$ a proud ve svazku těsně před neutralizací je $12\; \mathrm{A}$. Jaká síla působí na generátor svazku? Jaký je jeho výkon?

Aleš koukal na vypálenou díru ve ventilu.

(4 body)5. Série 29. Ročníku - 4. bezpečná jízda

Máme auto, které se blíží kolmo ke zdi. Řidič, který v autě jede, by se ale chtěl přibližovat ke zdi bezpečně. Jaký by muselo mít auto průběh rychlosti, aby vzdálenost od auta ke zdi v každý okamžik odpovídala dráze, kterou by auto s okamžitou rychlostí v té chvíli urazilo za $T=2\;\mathrm{s}$?

Karel přemýšlel nad bezpečnou vzdáleností.

(4 body)3. Série 29. Ročníku - 4. ubrzdi to

Po sebeprudším sešlápnutí brzdového pedálu nezačne auto brzdit okamžitě, ale brzdná síla po dobu $t_{\mathrm{r}}$ lineárně narůstá až na hodnotu $F_\mathrm{m}$. Koeficient statického třetí mezi pneumatikou a vozovkou je $f$. Jakou maximální rychlostí se může tento automobil pohybovat, aby ani při nouzovém brzdění nedošlo ke smyku?

Michal procházel kolem kolony.

(5 bodů)3. Série 29. Ročníku - 5. sešit dezertér

Na lavici se sklonem $α=5\dg$ leží sešit formátu A4 o hmotnosti $m$, mezi lavicí a sešitem působí statická třecí síla s koeficientem $f_{0}=0,\! 52$. Poté kdosi do lavice strčí a ta začne kmitat ve směru sklonu desky s frekvencí $ν=10\;\mathrm{Hz}$ a amplitudou $A=1\;\mathrm{mm}$.

  • Určete, jakou dodatečnou silou musíme na sešit tlačit (kolmo na lavici), aby se sešit nezačal pohybovat.
  • Určete, za jak dlouho sešit spadne z lavice, jestliže je na počátku jeho spodní hrana (ta kratší) na dolním okraji lavice. Dynamický koeficient tření je $f$, sešit považujte za tuhou desku.

Mirkovy sešity se snaží prchnout z přednášek v F1.

(2 body)2. Série 29. Ročníku - 1. potkan na ledě

Na ledě běží potkan rychlostí $v$. Najednou se rozhodne, že se chce otočit o $90\dg$ tak, aby po otočení běžel pořád rychlostí o velikosti $v$, ale v novém směru. Jaký nejmenší čas na to potřebuje? Předpokládejte, že potkaní nožičky se mohou po ledě pohybovat nezávisle; koeficient tření mezi nožičkami a ledem je $f$.

Xellos dostal smyk.

(3 body)2. Série 29. Ročníku - 3. fatální upuštění

Z rakety obíhající po kružnici ve výšce $h=2000\;\mathrm{km}$ nad Zemí hodíme směrem k Zemi nebohý šroubovák rychlostí $v=5\;\mathrm{km}\cdot \textrm{h}^{-1}$ vůči lodi. Za jak dlouho dopadne?

Karel nemá rád šroubováky.

(2 body)1. Série 29. Ročníku - 2. výskok z vlaku

Ve vlaku, který se může pohybovat po kolejích bez tření, stojí 2 lidé, každý s hmotností $m$. Kdy dosáhne vlak větší rychlosti? Když oba vyskočí z vlaku naráz, nebo když budou vyskakovat z vlaku postupně? Člověk vyskočí z vlaku relativní rychlostí $u$ (rychlost vyskakujícího člověka vůči vlaku po výskoku).

Radomír vyskakoval z vlaku.

1. Série 23. Ročníku - 3. adiabatický invariant

figure

Mezi dvěma zarážkami se po přímce rovnoměrně pohybuje hmotný bod o hmotnosti $m$ rychlostí $v$. Jednu ze zarážek začneme oddalovat rychlostí $v_{1}<<v$. Jak se změní energie hmotného bodu?

Na Zajímavé teoretické fyzice nespala Janap.

3. Série 22. Ročníku - 2. trainstopping

figure

Honza jede domů vlakem rychlostí $v_{0}$. Z poličky na zavazadla mu z batohu visí olovnice. Najednou vlak začne brzdit (zrychlením $a$ po dobu $t)$, protože na železniční přejezd před ním vjel neopatrný řidič. A Honzu napadne – mohla se olovnice s napnutým provázkem otočit o 180 °? Uvažte, že je olovnice pevně zavěšena na poličce.

Z maďarské přípravy na FO od Dalimila vybral Aleš.

2. Série 22. Ročníku - 3. ledvinové koule

Malá koule stojí v klidu na velké kouli, která volně leží na podložce. Do malé koule nepatrně strčíme a ta se svalí na zem. Jak daleko od původního bodu dotyku velké koule se zemí malá koule dopadne?

na teoretické mechanice zkoulel Lukáš Ledvina

2. Série 22. Ročníku - E. šikmá věc

Kolik vody musí být v PET lahvi postavené na uzávěr, aby její stabilita byla největší (při vychýlení ze svislé polohy spadne ze nejdelší čas)? Nezapomeňte na teoretickou předpověď.

nad vypitou lahví se zamyslel Béda

1. Série 22. Ročníku - 1. klouzání a kmitání

figure

Dvě závaží o hmotnostech $m$ a $M$ jsou spojena pružinou o tuhosti $k$ a leží na hladké podložce (tření můžeme zanedbat). Tělesu $m$ udělíme rychlost $v$ (viz obrázek). Jaká bude nejkratší vzdálenost mezi tělesy a kdy jí dosáhnou?

V ročenkách kanadské FO našel Honza Prachař.

6. Série 21. Ročníku - 1. pterodaktyl sestřelen

Pták FYKOSák letěl v létě 2007 na prázdniny do Jižní Ameriky. Svůj výlet dlouho plánoval, chtěl obletět celý kontinent, zhlédnout husté amazonské pralesy, zasněžené vrcholky And, patagonské nížiny i poušť Atacama, jezero Titicaca a pláž Copacabana. Cesta však dopadla tragicky, pták FYKOSák se už nikdy nevrátil.

Když letěl nad kolumbijskými pralesy, byl mylně považován za tajného agenta CIA a upadl do zajetí Revoluční ozbrojené lidové armády Kolumbie (FARC). Již téměř rok je pterodaktyl uvězněný kdesi v zajateckém táboře uprostřed kolumbijské džungle, strádá hladem a steskem. Za jeho propuštění požaduje FARC vysoké výkupné. Pokud bychom ho chtěli zaplatit, museli bychom zrušit soustředění a možná i celý seminář na několik let.

Dejte své chytré hlavy, silné paže a odvahu dohromady a pomozte nám vysvobodit ptáka FYKOSáka!

Pterodaktyl letěl ve výšce $1\,\jd{ km}$ nad pralesem rychlostí $4\,\jd{ m ⁄ s}$. Guerillový válečník, držící v ruce kalašnikov (kulka opouští hlaveň rychlostí $710\,\jd{ m ⁄ s}$), ho spatřil nad hlavou a vystřelil. Pták FYKOSák byl trefen do křídla a začal padat. Jak daleko od válečníka dopadl? (Odpor vzduchu si dovolte zanedbat.)

Vyplodil Honza Prachař.

6. Série 21. Ročníku - 4. rychlý úprk

Pták FYKOSák statečně prchá chodbou (nemůže v ní letět), v patách má dva vojáky, kterým se před okamžikem vymkl z pout. Chodba zatáčí ve tvaru písmene L a pterodaktyl horlivě přemýšlí, jak dál.

Chodba je široká $b$, pterodaktyl běží rychlostí $v_{0}$ a zatáčka je ve vzdálenosti $d$. Pokud velikost ptákova zrychlení dosáhne hodnoty $a_{0}$, pterodaktyl uklouzne, spadne a bude chycen. Po jaké dráze má běžet a jak se má naklánět, aby ho zatáčka zdržela co nejméně?

Napadlo Honzu Jelínka při dobíhání tramvaje za rohem.

5. Série 21. Ročníku - 2. otázka přežití

Od vchodu vede k vnitřnímu povrchu žebřík. Již jsi po něm sestoupil kilometr, když vtom jsi neopatrně sklouzl a pustil se žebříku. Jakou rychlostí dopadneš na povrch Rámy a za jak dlouho? Máš šanci přežít?

Martin Formánek

5. Série 21. Ročníku - 3. schody z nebe

Žebřík vede jen dva kilometry na plošinu, ze které se dále sestupuje po schodech, jež se mohutným obloukem klenou nad krajinou. Schodiště má zvláštní tvar. Je totiž postavené tak, že se na každý krok vynaloží stejná práce. Odvoď, jak závisí výška schodu na vzdálenosti od osy Rámy, pokud je délka schodů konstantní. Také můžeš určit, jaký tvar má onen oblouk.

Martin Formánek

5. Série 21. Ročníku - P. rámatřesení

Úspěšně ses dostal na povrch Rámy. Z ničeho nic se Ráma několikrát otřásl a zdá se ti, že se změnila rychlost jeho rotace. Tato otázka tě velice tíží. Navrhni proto několik způsobů, jak bys změněnou periodu rotace určil.

Martin Formánek

3. Série 21. Ročníku - 1. Angličani a Skoti

Předmětem této úlohy je, abyste odhadli, jak by se změnila rychlost rotace Země, kdyby Angličani a Skoti začali jezdit vpravo místo vlevo.

Úlohu zaslechl Aleš Podolník.

3. Série 21. Ročníku - 2. výtah až do nebe

Určete, jaké fyzikální vlastnosti musí mít materiál závěsného lana výtahu, který spojuje povrch Země a oběžnou geostacionární dráhu. Je vůbec takový materiál na Zemi dostupný?

Zadal Aleč Podolník.

3. Série 21. Ročníku - 3. hopsání po nakloněné rovině

figure

Malou kuličku hodíme vodorovně na nakloněnou rovinu. Kulička po ní začne poskakovat a po $N$ odrazech dopadne kolmo k povrchu nakloněné roviny (příklad trajektorie kuličky pro $N=4$ viz obrázek). Jaký je úhel $α$ nakloněné roviny? Předpokládejte, že se kulička odráží dokonale pružně, rotaci kuličky neuvažujte.

Pavel Motloch.

2. Série 21. Ročníku - 1. flusanec

Představte si, že jedete rychlíkem. Díváte se ven z otevřeného okna a sledujete okolní krajinu. O tři okna dál po směru jízdy nějaký zákeřný lump vyplivne žvýkačku. Kolik času máte, aby jste stihli uhnout? Samozřejmě přepokládáme, že žvýkačka je dokonalá koule a z okna nebyla vyhozena, nýbrž vlastně položena do proudu vzduchu.

Roman Fiala.

2. Série 21. Ročníku - 2. zmoklé autíčko

Navrhněte sklon a tvar předního skla automobilu tak, aby z něj kapky dešťové vody při rychlosti auta $80\,\jd{ km ⁄ h}$ nestékaly dolů, ale do stran. Ověřte, zda váš výsledek odpovídá skutečnosti. Co dalšího určuje sklon čelního skla?

Nad problémem se zamýšlel Honza Prachař při jízdě autem během průtrže.

1. Série 21. Ročníku - 1. míhání krajiny

Prozkoumejte skutečnost, že se při pohledu z jedoucího vlaku vzdálenější objekty na horizontu zdánlivě pohybují po okně pomaleji, zatímco sloupy u trati se jen tak mihnou. Jak závisí tato zdánlivá rychlost pohybu krajiny na její vzdálenosti od cestující veřejnosti?

Cestou domů napadla úloha Tomáše Jirotku.

1. Série 21. Ročníku - P. orosená odměna aneb ať vám kozel neuteče

Chováte neposlušného kozla, jehož oblibou je přeskakovat plot k sousedům. Nahánění kozla už máte pokrk, proto jste nakoupili vyšší pletivo, kterým chcete svůj pozemek nově oplotit. Místo, kde má plot stát, je ve svahu, a tak je situace trochu komplikovanější. Vy si ale jistě poradíte. Pod jakým úhlem plot vzhledem ke svahu postavit tak, aby bylo pro kozla co možná neobtížnější jej přeskočit?

Napadlo Honzu Prachaře na návštěvě příbuzných majících podobný problém.

6. Série 19. Ročníku - 1. zdolání kopečku

figure

Vozíček o hmotnosti $m$ jede po rovině rychlostí $v$, na níž leží dřevěný „kopeček“ o hmotnosti $M$ a výšce $h$, jenž po rovině klouže bez tření (viz obr. 1). Vozíček na kopeček najede. Za jakých podmínek se mu podaří přejet přes vrchol? Jakou rychlostí se bude hora nakonec pohybovat?

Našel Matouš v sovětské sbírce.

6. Série 19. Ročníku - 2. kukačky na lanech

figure

Kyvadlové hodiny o hmotnosti $M$ jsou zavěšeny na dvou dlouhých rovnoběžných lanech (viz obr. 2). Kyvadlo se skládá ze závažíčka o hmotnosti $m$ a lehké tyčky o délce $l$. Určete, o kolik se budou takové hodiny předbíhat (opožďovat) oproti hodinám pevně přibitým na stěně.

Našel Matouš v sovětské sbírce.

6. Série 19. Ročníku - 3. roztáčíme elektromotor

Na hřídeli elektromotoru je navinuta nit, na konci které je zavěšeno závaží o hmotnosti $m$. Pokud motor připojíme na ideální zdroj napětí $U$, závaží pojede vzhůru rychlostí $v_{1}$. Jakou rychlostí bude závaží klesat, pokud zdroj odpojíme a vstup elektromotoru zkratujeme? Mechanické tření neuvažujte.

Našel Matouš v sovětské sbírce.

4. Série 19. Ročníku - 1. turnaj Balónků

figure

Kdesi v dalekém vesmíru za 1001 hvězdami a jednou černou dírou byla nebyla planeta Balónků. Tyto inteligentní duté bytosti každý rok pořádají soutěž „Čím výš, tím líp“.

Každý z balónků si přiváže provázek, aby bylo možné určit jeho výšku. Aby se mohli Balónci účastnit soutěže, musí mít všichni stejné parametry. Kupodivu nikdo zatím nikdy nevyhrál. Délková hustota provázku je 11 luftíků na špurgl, hustota atmosféry je 110101 luftíků na krychlový špurgl, poloměr každého z balónků je 10 špurglů, hmotnost Balónka je 10 luftíků. Při pádu tělesa v tíhovém poli na planetě Balónků se za každý temp jeho rychlost zvýší o 111 špurglů za temp. Určete, jakou maximální výšku Balónka hlavní rozhodčí soutěže naměří a jak se bude Balónek pohybovat po dosažení této výšky. Nezvednutá část provázku každého Balónka leží volně na zemi. Závody Balónků probíhají v malých výškách, kde je hustota atmosféry přibližně konstantní.

Nápověda: Každý balónek má maximálně jeden provázek.

Úlohu navrhl Petr Sýkora od Havránka.

2. Série 19. Ročníku - 1. propiska na šňůrce

Ve stojící tramvaji visí u svislé desky na niti délky $l$ propiska o hmotnosti $m$. Tramvaj se rozjede se zrychlením $a$, které můžeme považovat za konstantní. Vypočítejte, kam až toto kyvadlo vykývne (jaký maximální úhel bude nit svírat s deskou) a kdy tužka opět ťukne do desky.

1. ročník 3.kolo

2. Série 19. Ročníku - 2. funící lokomotiva

Lokomotiva s osmi vagóny o hmotnosti $40\, \jd{t}$ se rozjíždí na dráze $1\, \jd{km}$ na rychlost $120\, \jd{km \cdot h^{-1}}$ . Jaká musí být minimální hmotnost lokomotivy tohoto vlaku, aby se vlak rozjel bez prokluzování kol na kolejnici?

Počítejte se součinitelem klidového tření $f=0,2$. Odpor vzduchu a valivý odpor zanedbejte.

Navrhl Jirka Franta.

1. Série 19. Ročníku - 2. Baník, slečno

figure

Fanoušci Baníku jeli do Prahy na Spartu. Policisté však byli po špatných zkušenostech připraveni a do vagónu nainstalovali vodní dělo.

Na půli cesty, když vlak zrovna stál v České Třebové, baníkovci začali demolovat vybavení vagónu (jenž váží $30\, \jd{t}$). Policisté nechali dotyčný vagón odpojit a briskně využili své zbraně. Za minutu na fanoušky vystříkali tisícilitrovou nádrž. O jakou vzdálenost proto popojel vagón dlouhý $30\, \jd{m}$?

Předpokládejte, že vagón je odbržděný a že voda z vagónu může vytékat pouze ve svislém směru. Změnu hmotnosti vagónu způsobenou odtokem vody můžete zanedbat.

Zážitek Honzy Prachaře, když se vracel vlakem domů.

6. Série 18. Ročníku - 3. sonda NASA

figure

Jet Propulsion Laboratory v Kalifornii vyvíjí pro NASA nový typ raketových pohonů. Pohonná jednotka využívá hybnost $α$-částic při rozpadu nuklidu fermia $^{257}_{100}Fm_{157}$, jehož hmotnost je $m_{Fm}$ a poločas rozpadu $T$. Druhým produktem přeměny je nuklid kalifornia $^{253}_{98}{Cf}_{155}$. Hmotnost $α$-částice je $m_{α}$, hmotnost nuklidu kalifornia je $m_{Cf}$, přeměnou se uvolní energie $E$. Předpokládejte, že každá $α$-částice opouští raketu ve stejném směru.

Vesmírná sonda s popsaným pohonem je na počátku v klidu, její hmotnost je $M$, hmotnost pohonné látky je také $M$. Určete rychlost sondy $v$ po přeměně poloviny hmotnosti nuklidů fermia. Výslednou hodnotu dopočítejte i číselně pro hodnoty $E = 1,106\cdot 10^{-12}\, \jd{J}$, $M = 4\, \jd{kg}$ a $T = 100,5\, \jd{dní}$, ostatní hodnoty najdete v tabulkách.

SR olympiáda.

6. Série 18. Ročníku - S. Hamiltonův formalismus

Langrangián částice v elektromagnetickém poli je $L=\frac{1}{2}mv-qφ+q v\cdot A=\frac{1}{2}m\cdot \sum_{i=1}^{3}v_{i}-qφ+q\cdot \sum_{i=1}^{3}v_{i}A_{i}$,

kde $φ$ je elektrický potenciál a $A$ magnetický vektorový potenciál.

  • Určete zobecněné hybnosti částice $p_{i}$ příslušející rychlostem $v_{i}$.
  • Napište Hamiltonovu funkci (v proměnných ($x_{i}$, p$_{i})!)$.
  • Řešte Hamiltonovy rovnice, je-li $A=0$ a $φ=-Ex_{1}$.

Zadal Honza Prachař.

5. Série 18. Ročníku - 2. pád ze schodů

figure

Malý Karlík si hraje s kuličkou. Při cvrnkání je však neopatrný, kulička se mu odkutálí k nakloněné rovině, kterou doma mají místo schodiště, a začne po ní klouzat dolů. Kulička se pohybuje tak, že vektor její rychlosti $v$ svírá s horní hranou nakloněné roviny úhel $φ$. Vypočítejte vektor rychlosti $v′$ kuličky (tj. jeho velikost a také směr) pod nakloněnou rovinou, jejíž výška je $h$. Tření mezi kuličkou a zemí je malé, proto ho zanedbejte. Předpokládejte, že horní a dolní hrana nakloněné roviny je zaoblená, takže se kulička neodlepí od podlahy.

Jako bonus můžete vypočítat, jak se změní směr rychlosti kuličky, která proletí válcovou jamkou o poloměru $R$ a hloubce $h$ se zkosenými hranami (viz obr. 1). Délku zkosení můžete vzhledem k poloměru jamky zanedbat.

Napadlo Matouše.

5. Série 18. Ročníku - S. Merkur, jáma a kyvadlo

figure

V následujících úlohách ověříme vaši znalost všech dosud probraných kapitol mechaniky, tj. Newtonova formalismu, D'Alembertova principu a Lagrangeova formalismu.

  1. Představte si planetu Merkur obíhající kolem Slunce. Jak známo, jeho eliptická trajektorie se stáčí (posouvá se poloha perihélia), což nemůže být způsobeno gravitační silou $F=κ(mMr)⁄r^{3}$. Dokažte, že když k této síle přidáme dodatečnou centrální sílu $F=C(r)⁄r^{4}$, kde $C$ je vhodná konstanta, celá trajektorie (elipsa) se bude otáčet konstantní úhlovou rychlostí (čili existuje vztažná soustava otáčející se konstantní úhlovou rychlostí taková, že trajektorie v ní bude elipsa). Znáte-li tuto úhlovou rychlost $Ω$, určete konstantu $C$. Stačí takováto oprava k záchraně Newtonovy teorie gravitace?
  2. Určete rovnovážné polohy homogenní tyčky délky $l$ opřené o vnitřní stěny jamky ve tvaru písmene „V“ (viz obr. 12) v závislosti na vrcholovém úhlu jamky $α$.
  3. Pomocí Lagrangeových rovnic vypočítejte periodu malých kmitů dvojzvratného kyvadla na obrázku 13. Závaží na koncích nehmotné tyčky délky $l$ mají hmotnosti $m_{1}$ a $m_{2}$, vzdálenost bodu závěsu od závaží o hmotnosti $m_{1}$ je $l_{0}$.

Na úlohu (1) narazil Matouš v jedné pěkné ruské knize; (2) a (3) zadal Honza Prachař a Jarda Trnka.

4. Série 18. Ročníku - 1. atomový útok v roce 1985

Sovětským generálům došla trpělivost. Už se nemohli dívat na provokace ze strany amerických imperialistů a stiskli červený knoflík na odpálení atomové bomby. Hned nato do řídicí místnosti přiběhl mladý poručík, který byl zodpovědný za propočítání dráhy letu, že si prý při výpočtech trochu přihnul ze stakanu vodky a důsledkem toho místo na New York míří raketa na spřátelenou Kubu.

Naštěstí je ale po ruce náhradní bomba, kterou by se ta původní dala sestřelit, čímž by se zamezilo rozkolu v socialistickém táboře. Původní raketa byla vystřelena rychlostí $v$ pod úhlem $α$. Jak mají sovětští experti nastavit úhel odpálení $β$ druhé rakety, aby tu první zasáhli, když mezi oběma odpaly je časová prodleva $T?$

Diskutujte, kdy se dá mír mezi spřátelenými zeměmi zachránit a kdy už ne. Odpor vzduchu zanedbejte. Všichni samozřejmě víte, že Země je placatá a její gravitační pole je homogenní.

Navrhl Jarda Trnka.

3. Série 18. Ročníku - 2. pobřežní hlídka

figure

Plavčík stojící ve vzdálenosti $D$ od břehu moře náhle spatří topící se bujnou blondýnku, která doplavala do vzdálenosti $D$ od břehu (viz obr. 1). Poraďte mu, jak se k ní má co nejrychleji dostat, pokud jeho rychlost běhu je $v$ a rychlost plavání $v/2$. Vzdálenost okraje moře od plavčíka závisí na úhlu $\varphi$ se spojnicí plavčíka a blondýnky následujícím předpisem $$d(\phi) = \frac{D}{3}( 8\cos{\phi}- {2\sqrt{16\cos^2{\phi}-12\cos{\phi} -3}}-3)$$

3. Série 18. Ročníku - S. Lagrangeovy rovnice 1. druhu

Mějme hmotný bod zavěšený na nehmotném a nepružném vlákně.

  1. Zaveďte kartézskou souřadnicovou soustavu a v ní napište vazebnou podmínku pro hmotný bod.
  2. Napište Lagrangeovy rovnice 1. druhu pro hmotný bod z předchozí části. Ukažte, že jsou ekvivalentní s rovnicí matematického kyvadla $\frac{\rm{d}^{2} \varphi}{\rm{d}t^{2}} + \frac{g}{l} \sin \varphi = 0$, kde $\varphi$ je úhlová výchylka z rovnovážné polohy.
  3. Malé těleso je v klidu na vrcholu polokoule a začne klouzat dolů. Pomocí Lagrangeových rovnic 1. druhu určete, v jaké výšce se těleso odlepí od polokoule. ( Nápověda: Těleso se odlepí v okamžiku, kdy $\lambda = 0$.)

Úlohu zadali autoři seriálu Honza Prachař a Jarda Trnka.

2. Série 18. Ročníku - P. nečekaná překážka

Řidič automobilu jedoucí rychlostí $v$ ve vzdálenosti $l$ náhle spatří, že jeho vůz směřuje doprostřed betonové zdi šířky $2d$. Součinitel klidového tření mezi pneumatikami a vozovkou je $f$. Poraďte řidiči, co má dělat, aby se vyhnul srážce se zdí. Rozhodněte, pro jakou velikost rychlosti je to ještě možné.

Napadlo Pavla Augustinského při cestě autem.

2. Série 18. Ročníku - S. Newtonovy pohybové rovnice

Napište a řešte pohybové rovnice hmotného bodu v tíhovém poli Země. Souřadnicovou soustavu orientujte tak, že osy $x$ a $y$ jsou vodorovné a osa $z$ míří vzhůru. Počáteční poloha hmotného bodu je $r_{0} = (0,0,h)$, počáteční rychlost je $v_{0} =(v_{0}\cosα,0,v_{0}\sinα)$.

Muž s puškou sedí v křesle, které se otáčí kolem svislé osy s frekvencí $f = 1\, \jd{Hz}$. Spolu s křeslem se otáčí terč, který je k němu pevně upevněn. V jistém okamžiku muž vystřelí kulku rychlostí $v = 300\, \jd{km \cdot h^{-1}}$ směrem od osy otáčení přesně do středu terče. V jakém místě prorazí kulka terč? Řešte jak z pohledu neinerciální, tak z pohledu inerciální vztažné soustavy. Vzdálenost hlavně od středu terče je $l=3\, \jd{m}$, odpor vzduchu zanedbejte.

Vyjádřete závislost rychlosti hmotného bodu na poloze v gravitačním poli Slunce.

Zadal Honza Prachař.

1. Série 18. Ročníku - 1. ošklivé káčátko

figure

Opuštěné ošklivé kačátko zůstalo osamocené uprostřed kruhového rybníku. Chce se dostat za svými sourozenci a matkou kachnou, ale na břehu rybníka na něj číhá liška. Kačátko je ještě mladé, proto dokáže vzlétnout pouze z pevné země. Určete maximální poměr rychlostí běhu lišky a plavání kačátka, aby stihlo doplavat na břeh a z něj lišce uletět. Poraďte také kačátku, jakou strategii má zvolit.

Úlohu znala Lenka Zdeborová.

1. Série 18. Ročníku - 2. přistřižené kyvadlo

figure

Malá hmotná kulička visí na konci nehmotného provázku a kmitá svojí vlastní frekvencí $f$ kolem rovnovážné polohy (viz obrázek). Jaká bude vlastní frekvence $f'$, pokud zkrátíme provázek na polovinu?

Úloha pochází z MFO v Kanadě, 1997.

1. Série 18. Ročníku - S. kinematika hmotného bodu

Poloha hmotného bodu v závislosti na čase v kartézské souřadnicové soustavě je popsána polohovým vektorem $r(t) =(R \cos\(\omega t\),R \sin\(\omega t\))$. Určete, jak závisí na čase vektory $v(t)$ a $a(t)$. Vypočítejte také tečnou, normálovou a binormálovou složku zrychlení.

  • Kolo poloměru $R$ se valí bez prokluzování po přímé dráze rychlostí $v$. S kolem je pevně spojen bod ve vzdálenosti $r$ od středu. Určete jeho pohyb a rychlost jako funkce času v soustavě spojené se Zemí. Může být jeho rychlost v určitém okamžiku nulová?

Zadali autoři seriálu Honza Prachař a Jarda Trnka.

5. Série 17. Ročníku - 2. loď duchů

Loď duchů pluje proti proudu, jehož rychlost je $u$. Duchové jsou líní a slabí na přihazování uhlí do kotlů. Poraďte jim, jaká má být rychlost lodi $v$ vůči vodě, aby loď měla minimální spotřebu uhlí. Předpokládejte, že spotřeba paliva je úměrná vykonané práci na danou dráhu. Jak se výsledek změní, pokud místo lodního šroubu bude loď poháněna řetězem uloženým na dně řeky?

Navrhl Jirka Franta.

3. Série 17. Ročníku - 1. na oběžné dráze

Tři stejné družice obíhají po kružnici kolem malé planetky rychlostí $v$ tak, že jsou neustále ve vrcholech rovnostranného trojúhelníka. Určete jejich hmotnost, která není zanedbatelná vůči hmotnosti planetky.

Úlohu navrhl Honza Prachař.

3. Série 17. Ročníku - 4. kapitán Kork zasahuje

Vesmírná loď Escapeprise se vrací z prostoročasové bitvy s Odborgy. Během letu ale zjišťují, že nešťastnou náhodou směřují přímo do černé díry FAK-U0. Rozhodnou se pro úhybný manévr a kolmo na směr své rychlosti vypustí v jednom okamžiku všechno palivo. Vypočtěte vzdálenost, ve které Escapeprise kolem černé díry proletí. Jakou největší hmotnost může černá díra mít, nemá-li do ní Escapeprise spadnout? Jako bonus se zamyslete nad tím, zda kapitán Kork mohl úhybný manévr vymyslet chytřeji? Hmotnost samotné lodě je $M$, paliva $m$. Rychlost lodě ve velké vzdálenosti od černé díry je $V$ a směřuje do středu černé díry. Rychlost vypuštěného paliva je $v$ a úhybný manévr proběhl též velmi daleko od černé díry.

Vymyslel Jarda Trnka při sledování svého oblíbeného seriálu.

3. Série 17. Ročníku - P. jede, jede autíčko

Představte si autíčko, jehož motor má konstantní tažnou sílu $F$, pohybující se rychlostí $v$. Jeho výkon tedy je $P=Fv$. Avšak cyklista jedoucí konstantní rychlostí $u$ pozoruje výkon $P=F(v-u)$. Spotřeba benzínu, která odpovídá výkonu, je však stejná z pohledu cyklisty i stojícího chodce. Vysvětlete tento „paradox“. Odpor vzduchu neuvažujte.

Na klasický paradox v mechanice si vzpomněl Honza Prachař

2. Série 17. Ročníku - 3. kulička filuta

Mějme kuličku, která se volně pohybuje po drátové spirále popsané rovnicí $r = Cφ;$ $r$ je vzdálenost od středu a $φ$ je úhel otočení. Počáteční poloha kuličky je $r_{0}$. Spirála rotuje kolem osy procházející jejím středem a kolmé na její rovinu úhlovou rychlostí $ω$ v záporném směru (tj. po směru hodinových ručiček, v opačném směru, než ve kterém roste $φ$). Zjistěte závislost rychlosti kuličky $v$ na $r$.

Jedna řešitelná úloha mezi Jardovými nápady, vybral on sám.

2. Série 17. Ročníku - E. moucha na hladině

Z obdélníkové nádoby vyléváme vodu přes jednu její stěnu. Na hladině plave mrtvá moucha. Proměřte, jak se bude moucha při velmi pomalém vylévání pohybovat. Místo mrtvé mouchy můžete použít jiný odpovídající předmět.

Za dlouhých zimních večerů nad úlohou bádal Honza Houštěk.

1. Série 17. Ročníku - 1. plovající špunt

Máme vědro s vodou a v něm na dně rukou držíme korkový plovák. Takto pustíme vědro ze střechy budovy a zároveň pustíme plovák. Kde se bude plovák nacházet těsně předtím, než vědro narazí na zem? Budova je vysoká $30\, \jd{m}$.

Úlohu zadal Michael Komm.

1. Série 17. Ročníku - 2. zlatá rybka

Představte si dva rybáře sedící naproti sobě na březích řeky široké $30\, \jd{m}$. Zlatá rybka plavající ve vodě spolkne v jednu chvíli návnadu obou z nich. Vzdálenost od rybky k prvnímu rybáři je $17\, \jd{m}$, ke druhému $20\, \jd{m}$. V tu chvíli začnou oba rybáři navíjet, pořád rychleji a rychleji avšak oba zrychlují stejně. A my se ptáme, po jaké křivce (před jejím analytickým vyjádřením preferujeme její název) se rybka dostane na přímku mezi oběma navijáky.

Z přípravy na slovenskou olympiádu zná Miro.

1. Série 17. Ročníku - 3. vrh šikmý vzhůru

Fykosák se (po absolvování letošního soustředění) rozhodne cvičit v hodu granátem. Nemá ale k dispozici rovný terén, tak hází ve svahu. Směrem dolů dokáže dohodit $62\, \jd{m}$, ale proti svahu jen $53\, \jd{m}$ (udělal mnoho pokusů, takže v obou případech nalezl optimální úhel). Určete sklon svahu.

Při nedostatku rovného terénu vymyslel Honza Houštěk.

1. Série 17. Ročníku - 4. závodník

Auto zrychlí z klidu na $100\, \jd{km\cdot h^{-1}}$ za půl minuty, přičemž ujede kilometr. Určete průběh rychlosti tak, aby se minimalizovala maximální velikost absolutní hodnoty zrychlení, kterého auto během pohybu dosáhne.

Lehce přeformulovaný nápad Pavla Habudy.

5. Série 16. Ročníku - 1. prší, prší

V dešťovém mraku je množství malých kapiček vody, jejichž hustotu (tj. celkovou hmotnost kapiček v nějakém objemu lomeno tímto objemem) označme $\rho_{1}$, hustotu vody $\rho_{0}$. Spojením několika kapiček vznikne větší kapka, která začne padat a postupně na sebe nabaluje další a další kapičky. Spočítejte, jak se bude měnit poloměr padající kapky, a s jakým zrychlením se bude pohybovat.

Pro jednoduchost neuvažujte odpor vzduchu působící na kapku a malé kapičky považujte za nehybné.

5. Série 16. Ročníku - 3. elektrický minigolf

Mějme dvě na sebe kolmé nevodivé tyče a na nich nabité kuličky (viz obrázek), které se po nich mohou po tyčích volně pohybovat. Kuličky mají stejnou hmotnost $m$ a náboje $q$ a $-2q$. Na počátku jsou v klidu a jejich vzdálenost od průsečíku tyčí je $d$ a $2d$. Určete, kde se bude nacházet druhá kulička v okamžiku, kdy první dosáhle průsečíku tyčí.

3. Série 16. Ročníku - 1. vítr na dálnici

V autoškole každého upozorňují na nebezpečí bočního větru při vjezdu ze závětří na otevřené prostranství. Zejména nebezpečné je to prý na dálnici při velké rychlosti.

Uvažujte konstatní rychlost bočního větru a spočtěte, jak se mění síla působící z boku v závislosti na rychlosti auta. Tvar auta předpokládejte takový, abyste úlohu dokázali vyřešit. Diskutujte vliv větru na následný pohyb vozidla.

2. Série 16. Ročníku - S. limity a derivace

 

  • Dokažte, že těleso, které má v čase $t$ polohu $x = gt^{2}/2$ + $v_{0}t$ + $x_{0}$ se pohybuje se zrychlením $g$.
  • Spočítejte $lim_{x→1}(x^{2} - 4x + 3)/(x^{2} + 2x - 3)$
  • Nahraďte co nejlépe funkcí $f$ v okolí bodu $x = 0$ lineární funkcí, víte-li $f(0)=3$ a $f'(0)=-2$.
  • Jaký je poměr výšky a průměru podstavy válce, který má při daném povrchu maximální objem?

1. Série 16. Ročníku - 3. hračka

Organizátor Fykosu dostal k narozeninám hračku, která je schematicky znázorněna na obr. Hračka, která slouží také jako záložka, se skládá z malého cínového kalíšku délky $l$ s cínovou kuličkou.

Poraďte organizátorovi, jakou rychlost má udělit kuličce, aby spadla do kalíšku. Uvažujme, že kalíšek je v klidu, je velmi malý v porovnání s délkou provázku a ztráty mechanické energie jsou minimální.

4. Série 15. Ročníku - P. proč máme Měsíc?

Bod, ve kterém má gravitační síla Země a Slunce stejnou velikost, je k Zemi blíže, než obíhá Měsíc. Proč tedy Měsíc neobíhá kolem Slunce?

4. Série 15. Ročníku - S. rovnoměrně zrychlený pohyb

Mějme volný hmotný bod, jehož klidová hmotnost je $m_{0}$ a který je v naší vztažné soustavě v klidu. V čase $t = 0$ začne na hmotný bod v našem systému působit konstantní urychlující síla o velikosti $F$.

  • Vypočtěte časovou závislost rychlosti hmotného bodu v naší soustavě. Z této závislosti určete zrychlení hmotného bodu vůči našemu systému. (Řešte pouze pro časy $t>0$).
  • V každém okamžiku můžeme s uvažovaným hmotným bodem spojit tzv. klidovou inerciální soustavu. Jak již název napovídá, jedná se o inerciální systém, ve kterém je hmotný bod v daném okamžiku v klidu. S jakým zrychlením se hmotný bod pohybuje ve svých klidových soustavách? Jak velká síla na něj v těchto systémech působí?

6. Série 14. Ročníku - S. principy mechaniky

* Pomocí principu virtuálních prací nalezněte rovnovážnou polohu systému na obrázku, pokud navíc na konec tyče zavěsíme závaží o hmotnosti $M$.

* Dokažte tvrzení, které jsme při řešení pohybu Huygensova kyvadla použili pro pohyb po cykloidě, totiž, že velikost rychlosti pohybu vyšetřovaného bodu je rovna $2 \frac{\d z}{\d t}$.

Zadali autoři seriálu Honza Houštěk a Lenka Zdeborová.

5. Série 14. Ročníku - 2. dělo na lodi

Děla na bitevních lodích se nabíjejí následujícím způsobem: do hlavně se dá střela o hmotnosti $M$ a za ní určitý počet balíku s výbušninou (objem jednoho balíku je $V_{0})$, podle toho jak daleko chceme střílet. Kolikrát se zvětší dostřel takového děla, když nabijeme dvojnásobné množství výbušniny? Výbuch si představujte tak, že najednou se místo výbušniny objeví dvouatomový plyn o teplotě $T_{0}$ a tlaku $p_{0}$. Ráže děla je deset palců. Odpor vzduchu zanedbejte.

Nápad Karla Kouřila, když přemýšlel, co zadáme do FYKOSu.

5. Série 14. Ročníku - S. kolotoč

 

  • Mojmír a Anežka sedí přesně proti sobě na točícím se kolotoči. Ještě je sníh a tak si Mojmír připravil sněhovou kouli a na kolotoči ji chce hodit po Anežce. Poraďte mu, jakou rychlostí a jakým směrem (vzhledem ke kolotoči) má kouli hodit, aby Anežku zasáhl. Údaje jsou: vzdálenost obou od osy $R=3\;\jd{m}$, úhlová rychlost kolotoče $\omega =10 \jd{rad. s^{-1}}$.

Poznámka: Úlohu řešte v inerciální soustavě a předpokládejte, že Mojmír je schopný vrhnout kouli dostatečně rychle ve vodorovném směru. Lze tedy předpokládat pohyb koule po vodorovné přímce. Úloha nemá samozřejmě jednoznačné řešení, pokuste se najít nějaké reálné (odhadněte, jakou asi rychlostí se hází sněhové koule).

  • Načrtněte, narýsujte, odhadněte, vypočtěte, nasimulujte nebo nějak jinak zjistěte, jak bude v případě vašeho řešení části a) vypadat trajektorie koule v soustavě spojené s kolotočem a v nějakém bodě načrtněte zdánlivé síly, které na kouli působí.
  • Rozhodněte, která z následujících tvrzení jsou nepravdivá, a proč?
    • Z pohledu inerciální soustavy působí na rotující hmotný bod odstředivá síla, která vyrovnává dostředivou sílu, a proto se hmotný bod pohybuje rovnoměrně.
    • Odstředivá síla je reakcí na dostředivou sílu, neboť má stejnou velikost a opačný směr.
    • Když v inerciálním systému náhle přestane na rovnoměrně rotující těleso působit dostředivá síla, bude těleso pokračovat v pohybu po tečné přímce. Z pohledu neinerciálního systému se bude v důsledku působení odstředivé síly pohybovat po radiální přímce.

Zadali autoři seriálu Honza Houštěk a Lenka Zdeborová.

3. Série 14. Ročníku - S. sonda k Jupiteru

Uvažujme družici letící k Jupiteru kolmou na jeho dráhu. Její rychlost ve velké vzdálenosti od Jupitera je $v_{0}=10000 \;\jd{m.s^{-1}}$. Družice proletí za Jupiterem, její minimální vzdálenost od jeho středu je přitom rovna trojnásobku Jupiterova poloměru. Určete výsledný směr a velikost rychlosti sondy.

Nápověda: Nejprve proveďte přechod do soustavy, ve které je Jupiter v klidu. V této soustavě pak spočtěte úhel $\phi$, o který se při pohybu po hyperbole změní směr rychlosti.

Zadali autoři seriálu podle úlohy ze 30. IPhO v Itálii.

2. Série 14. Ročníku - 2. skoky do nebe

Ze střechy 10 m vysokého domu pouštíme s nulovou počáteční rychlostí gumové míčky na chodník. Míčky jsou všechny stejně velké, mají však hodně rozdílné hmotnosti. Do jaké maximální výšky může některý z míčků vyskočit, máme-li jich k dispozici a) 2, b) $n$. Všechny rázy považujeme za dokonale pružné, veškeré odpory prostředí zanedbejme.

Zadala Lenka Zdeborová.

2. Série 14. Ročníku - 3. šroubovice

Mějme nekonečný drát stočený do pravotočivé šroubovice (helixu). Drát je rovnoměrně nabitý a osa helixu je totožná s osou $z$. Do vzniklého pole pošleme nabitou částici (drát je tenký, takže do něj částice nenarazí). V jistém časovém okamžiku známe její $p_{z}$ a $L_{z}$, tedy $z$ové komponenty hybnosti a momentu hybnosti. Můžeme v jiném okamžiku určit $p_{z}$, známe-li v tomto okamžiku $L_{z}?$

(Problém lze vyřešit zcela exaktně. Naproti tomu není určitě nezajímavé zkusit situaci počítačově simulovat a dostat tak hledanou závislost v podstatě experimentálně, v případě ověřit teoretickou předpověď.)

Navrhl Ruda Sýkora.

1. Série 14. Ročníku - S. autíčka

 

  • Autíčko o hmotnosti $m$ se rozjíždí z klidu tak, že výkon $P$ je konstantní. Určete závislost zrychlení, rychlosti a polohy na čase. Návod: znáte-li výkon, je jednoduché určit závislost kinetické energie autíčka na čase.
  • Autíčko jede při maximálním výkonu do kopce rychlostí

$v_{1}=95 \jd{km.h^{-1}}$. Ze stejného kopce dolů jede při plném výkonu rychlostí $v_{2}=162 \jd{km.h^{-1}}$. Jak rychle pojede po rovině? Odporová síla je úměrná $v^{2}$.

Zadal autor seriálu Pavel Augustinský.

6. Série 13. Ročníku - 1. brouček

Brouček o hmotnosti $m$ stojí na obruči o hmotnosti $M$ a poloměru $r$, tato obruč leží na absolutně hladkém vodorovném stole. Náhle se brouček něčeho lekne a dá se do běhu. Poběží po obruči. Vaším úkolem je popsat trajektorii středu obruče (za předpokladu nulového tření mezi obručí a stolem).

1. Série 13. Ročníku - 1. trhání nitě

Mějme pevně upevněný válec o poloměru $R_{V}$ umístěný ve vakuu mimo jakékoliv silové pole. K tomuto válci připevníme (např. přilepíme) jeden konec niti, která má mez pevnosti v tahu $σ_{t}$, poloměr $r$ a délku $l$, na jejímž druhém konci je upevněna olověná kulička o hmotnosti $m$. Nit napneme a kuličce udělíme rychlost $v_{0}$, jejíž směr bude kolmý na napnutou nit a na osu válce. Nit se začne na válec namotávat. Určete, v jaké vzdálenosti od válce se kulička utrhne a jaká bude v tomto okamžiku její rychlost.

Řešte nejprve obecně a pak pro hodnoty: $v_{0}=1\;\mathrm{m}\cdot \mathrm{s}^{-1}$, $m=2\;\mathrm{kg}$, $r=0,2\;\mathrm{mm}$, $σ_{t}=160\,\jd{MPa}$, $R_{V}=5\;\mathrm{cm}$, $l=2\;\mathrm{m}$.

5. Série 12. Ročníku - 4. kulička a nakloněná rovina

Dokonale pružnou ocelovou kuličku spustíme z výšky $h$ (měřeno od místa dopadu) na nakloněnou rovinu, svírající s vodorovnou rovinou úhel $α$. Ve vzdálenosti $d$ od místa dopadu kuličky (ve směru klesání roviny) je svislá stěna. Určete jak vysoko (nad místem dopadu) v ní musíme udělat otvor, aby jím kulička proletěla. Řešte nejprve obecně a pak pro hodnoty $h=50\;\mathrm{cm}$, $d=15\;\mathrm{cm}$, $α=15^{\circ}$. Diskutujte pohyb kuličky v případě, že nakloněná rovina je nekonečná a kuličce nic v cestě nestojí.

2. Série 11. Ročníku - 1. korálky

Na tyči zanedbatelné hmotnosti o celkové délce $4a$ jsou navlečeny symetricky ve vzdálenosti $a$ od osy otáčení dvě koule o hmotnosti $m$. Na obou koncích tyče jsou umístěny dokonale pružné odrazné destičky. Tyč je roztočena na úhlovou rychlost $ω_{0}$ a poté jsou uvolněny obě koule. Za předpokladu, že se tyč nadále pohybuje volně a bez tření určete:

  • Po jaké trajektorii se budou pohybovat obě kuličky vzhledem k pozorovateli v inerciální soustavě.
  • Jak se bude měnit úhlová rychlost soustavy $ω$ v závislosti na čase.
  • Jak by se změnily výsledky předešlých úloh, kdybychom udržovali (např. pomocí motoru) úhlovou rychlost na konstantní hodnotě $ω_{0}$.

2. Série 11. Ročníku - 4. kapka deště

Jeden náš řešitel, který se vracel ze soustředění za deštivého počasí vlakem domů si všiml, že kapky na skle vytvářejí přímé stopy. Změřil, že jsou od svislého směru odkloněny o úhel $α=35^{o}$. Určete jakou rychlostí jel vlak, mají-li kapky poloměr $r=2\;\mathrm{mm}$.

2. Série 11. Ročníku - P. automobily

Představte si, že po přímé silnici jedou dva automobily o hmotnosti $m$ konstantní rychlostí $v$. Jeden z nich pak zrychlí na rychlost $2v$ a jeho kinetická energie se tím zvětší o $3mv^{2}/2$. Při pohledu ze soustavy spojené s druhým autem zrychlí první z nulové rychlosti na rychlost $v$, čímž získá kinetickou energii $mv^{2}/2$. Vysvětlete, jak je to možné, když z hlediska obou soustav by se měla uvolnit stejná energie paliva.

4. Série 10. Ročníku - 2. Pepek námořník

Spočtěte práci, kterou musí vykonat námořník na to, aby svinul plachtu o hmotnosti $M$, která má šířku $a$ a výšku $b$. Plachta visí celá svisle dolů z ráhna a námořník ji navíjí na ráhno konstantní rychlostí.

3. Série 10. Ročníku - 1. skokan

Člověk padá z můstku do bazénu, přičemž v bazénu je voda a můstek je ve výšce $h$ nad hladinou. Náš skokan má hmotnost $M=80\;\mathrm{kg}$, hustotu $ρ=0,9\; \textrm{g}\cdot \mathrm{cm}^{-3}$, je vysoký $L=1,7\;\mathrm{m}$ a na počátku skoku (volného pádu) byl v klidu. Do jaké největší hloubky $H$ se skokan ponoří? Jaký bude jeho další pohyb? Odpor vodního prostření:

  • zanedbejte
  • nezanedbejte

2. Série 10. Ročníku - 2. magnetické kyvadlo

figure

V homogenním tíhovém poli (tíhové zrychlení $g=9,81\;\mathrm{m}\cdot \mathrm{s}^{-2})$ je na závěsu zanedbatelné hmotnosti délky $l=1,00\;\mathrm{m}$ umístěna malá kovová kulička o hmotnosti $m=10,0\; \textrm{g}$. Na kuličku byl přiveden náboj o velikosti $Q=5,0\; \textrm{μC}$. Celá tato aparatura se nachází ve svislém homogenním magnetickém poli, jehož vektor magnetické indukce $\textbf{B}$ o velikosti $B=0,5\; \textrm{T}$ má stejný směr jako tíhové zrychlení $\textbf{g}$. Vnější magnetická pole jsou vůči tomuto magnetickému poli zanedbatelná. Celá soustava se nachází v klidu. Závěs vychýlíme o úhel $α = 7°$ a uvolníme. Popište pohyb kuličky po uvolnění.

2. Série 10. Ročníku - E. kostka cukru

Zjistěte, jaký tlak vydrží kostka cukru, tj. jaká je její mez pevnosti v tlaku. V řešení nezapomeňte uvést parametry použitých kostek (rozměry kostky, značku cukru apod.). Vhodnou metodou proveďte tolik měření, aby vaše výsledky byly průkazné (nejméně deset měření na jeden druh kostky). Z výsledků zkuste vyvodit nějaké závěry, můžete např. odhadnout práci potřebnou na rozdrcení kostky cukru na cukr krystal.

2. Série 10. Ročníku - S. oběžná dráha Země kolem Slunce

figure
figure

Určete pravou anomálii a vzdálenost Země od Slunce po $1/4$ oběžné doby Země kolem Slunce od průchodu Země periheliem. Velká poloosa je $a=1\;\mathrm{AU}$ a excentricita $e=0,0167$.

1. Série 10. Ročníku - 2. alchymistické zrcadlo

Mějme válcovou nádobu se rtutí. Roztočíme ji úhlovou rychlostí $Ω$ kolem rotační osy. Určete ohniskovou vzdálenost zrcadla, které tvoří povrch rtuti.

1. Série 10. Ročníku - 4. překvapení po procitnutí

Představte si, že jdete večer klidně spát a do rána se veškeré vzdálenosti a rozměry všech přemetů zvetší desetkrát, přičemž jejich hmotnost se nezmění. Zanechá tato událost nějaké stopy na vaší existenci? A pokud ano, tak jaké?

1. Série 10. Ročníku - E. výše mého domova hvězd se bude dotýkat

První experimentální úloha letošního ročníku je svým zadaní poměrně jednoduchá, poskytuje však velký prostor pro vaši nápaditost a vynalézavost: Změřte výšku vašeho bydliště co nejvíce způsoby a výsledky porovnejte. Nebojte se odvážných nápadů, originalita řešení bude kladně hodnocena. Spočítejte také nebo alespoň odhadněte chyby měření nezapomínajíce na to, že ve fyzice platí: jedno pozorovaní = žádné pozorovaní!

6. Série 9. Ročníku - 1. gejzír na betoně

Jednoho krásného dne se studentíci na jednom nejmenovaném gymnáziu nudili, a tak si vymysleli zábavu. Do igelitového pytlíku nabrali vodu a vyhodili jej z okna. Na betonovém chodníku to udělalo krásný gejzír. Ale co čert nechtěl – zrovna přišel do třídy profesor fyziky a zeptal se jich: „Z jaké výšky byste museli vyhodit ten pytlík z okna, aby vám ta voda přešla do varu?“ No, a my se vás ptáme na totéž. Můžete zanedbat odpor vzduchu, popřípadě zauvažovat, co by se stalo, kdyby tam odpor vzduchu byl.

6. Série 9. Ročníku - 4. žabák Břéťa

Na rybníce plave čtvercová deska o hmotnosti $M$ a straně $l$ a na jejím okraji sedí žabák Břéťa s tělesnou hmotností $m$. Jakou rychlostí a jakým směrem musí vyskočit, jestliže se chce trefit přesně na druhý konec desky? Předpokládejte, že se deska při odrazu minimálně ponoří, odpor prostředí můžete zanedbat.

5. Série 9. Ročníku - 1. řetízek babičky Julie

figure

Na stole leží stříbrný řetízek po babičce Julii. Část, která je dlouhá $a$, visí přes hranu stolu, zbytek délky $b$ ještě leží na stole, jak je vidět na obrázku. Deska stolu je ve výšce $H$ nad podlahou, vše se nachází v klidu. V čase $t=0$ řetízek uvolníme a ten začne klouzat dolů ze stolu. Za jak dlouho spadne celý řetízek na zem (měřeno od chvíle, kdy se přestane dotýkat stolu)?

5. Série 9. Ročníku - 3. ucpaná roura

figure

V trubce čtvercového průřezu $S$ (viz obrázek) je umístěn hranol se stěnami skloněnými o úhly $α$, $β$. Na obou stranách hranolu je plyn o tlaku $p$. Kterým směrem a s jakým zrychlením se začne hranol pohybovat, jestliže byl původně v klidu?

4. Série 9. Ročníku - 2. opilci v New Yorku

figure

Dva kamarádi se po dlouhém nočním tahu ztratili kdesi ve spleti newyorských streets a avenues. Jak to odpovídá jejich stavu, procházejí ulice po křivce velmi blízké sinusovce s amplitudou $A=5\;\mathrm{m}$ a periodou $T=12{,}6\;\mathrm{m}$. Udržují konstantní rychlost potácení $v=1\;\textrm{m}\cdot \textrm{s}^{-1}$ (ve směru osy ulice). Shodou okolností se v jeden okamžik ocitnou oba ve vzdálenosti $l=27\;\mathrm{m}$ od téže křižovatky, každý však uprostřed jiné ulice (viz obrázek), přičemž oba směřují doleva od směru k průsečíku obou ulic. Určete, v jaké nejmenší vzájemné vzdálenosti se během průchodu křižovatkou ocitnou, předpokládáte-li, že oba směřují stále týmž směrem a jeden druhého si nevšímají.

Cílem této úlohy je, abyste se naučili pracovat se souřadnicemi, takže řešení nemusí být v obecném tvaru, můžete klidně zaokrouhlovat. Výsledky obdržené numericky budou posuzovány rovnocenně analytickému či grafickému řešení.

4. Série 9. Ročníku - 4. drama na schodech

figure

Starostlivá maminka se chystá se svým malým drobečkem na procházku do parku. Vytlačí kočárek ze dveří, zamkne je a teď už na ni čeká jen malá překážka – schody. Postupně zdolává první patro, druhé patro a stále se ne a ne objevit někdo, kdo by jí pomohl. Najednou si ale vzpomene, že nahoře zapomněla láhev se sunarem. Co kdyby se snad její mazlíček na procházce unavil a dostal hlad? Nechá tedy kočárek kočárkem a běží zpět nahoru. Odemkne dveře, jde do kuchyně, vezme láhev a vtom ji přeběhne mráz po zádech, vyrazí studený pot na čele, znovu ji přeběhne mráz po zádech a teprve potom si uvědomí proč. Vždyť nechala stát kočárek jen tak na schodech! (Řešitelé bez představivosti nechť si prohlédnou přiložený obrázek, kde $T$ značí těžiště.) Hrůzou nepříčetná běží záchranit, co se dá. Na vás zbývá dokončit tento příběh, co myslíte, kde nalezne kočárek se svým děťatkem?

4. Série 9. Ročníku - E. ať žije sníh!

Je zima, blíži se jarní prázdniny, a jistě každý z vás se chystá do hor lyžovat, čehož jsme se rozhodli zneužít, a tak vám zadáváme následující úlohu: Změřte koeficient tření lyžaře na sněhu.

K dispozici máte cokoliv, zejména tedy toho lyžaře, lyže (kdo provede měření pro porovnaní zvlášť na běžkách a zvlášť na sjezdovkách, bude mít plus), sjezdovku (fyzikálně řečeno nakloněnou rovinu), měřič času (normálně řečeno stopky) a jiné věci, co vás napadnou a co byste mohli upotřebit. Pokud byste se chtěli vymlouvat, že letos již lyžovat nebudete, není problém tuto úlohu změřit i na rovině. Je jisté, že i ve vaší vesnici (městě, nebo v čem jiném bydlíte) bude alespoň jeden den sníh.

Pozn.: Nezapomeňte, že navoskované lyže na sněhu je krásný případ systému, kde koeficient tření závisí na rychlosti a možná i na povrchu styčné plochy, což můžete ověřit jízdou po jedné lyži. Bohužel však vzhledem k odporu vzduchu a dalším ručivým vlivům budou asi tyto efekty špatně měřitelné (ve vyšší rychlosti sice trochu klesne koeficient tření, zato značně vzroste odpor vzduchu).

3. Série 9. Ročníku - 1. vyhlodaný hranol

figure

Na vodorovné rovině je položen vyhlodaný hranol o hmotnosti $M$ (viz obrázek), který se po ní může bez tření pohybovat. V nejnižším místě leží krychlička o hmotnosti $μ$. Na nakloněné části hranolu leží krychlička o hmotnosti $m$. I malé krychličky se mohou pohybovat po vyhlodaném hranolu bez tření. Jaká musí být splněna podmínka mezi hmotnostmi $M$, $m$, $μ$ a úhlem α, aby se po uvolnění krychličky $m$ krychlička $μ$ začala vůči hranolu $M$ pohybovat?

3. Série 9. Ročníku - 3. Pinocciova čepička

Papa Karlo zhotovil pro Pinoccia čepičku z tenkého plechu ve tvaru kužele o výšce $20\;\textrm{cm}$ a s vrcholovým úhlem $60^\circ$. Bude ale takováto ozdoba držet na jeho hlavě, která má tvar koule o poloměru $15\;\textrm{cm}$ a je dokonale hladká?

3. Série 9. Ročníku - P. vodní kyvadlo

figure

Mějme nádobu tvaru kvádru zanedbatelné hmotnosti o čtvercové podstavě strany $a$ a výšce $2a$. V této nádobě se nachází krychlové vodní těleso. V jaké maximální výšce $h$ ode dna můžeme naši nádobu zavěsit, aby se po zmrznutí vody převrátila? (Viz obrázek 2, který znázorňuje řez nádoby vertikální rovinou procházející těžištěm.) Uvažujte dva případy:

  • nádoba je dokonale tuhá a voda zamrzá ode dna,
  • voda si během zamrzání uchovává stále svůj krychlový tvar, nádoba je tedy dostatečně pružná. Přitom podél stěn led klouže, tedy výška závěsu nad podstavou zůstává konstantní.

2. Série 9. Ročníku - 1. Nezbedkova Nezbedka

figure

Na obrázku 1 plove loďka. Její majitel, známý vynálezce a kutil Nezbeda, vyřešil problém bezvětrného počasí následujícím způsobem: na záď lodi připevnil výkonný fén značky Fukar a nasměroval jej vpřed přímo na malou lodní plachtu. Na vás teď je, abyste usoudili, za jakých podmínek se loďka rozjede vpřed či vzad. Můžete se také zamyslet nad tím, jaké zlepšovací návrhy byste Nezbedovi poradili, aby jeho pohon pracoval za bezvětří co nejefektivněji.

2. Série 9. Ročníku - 3. válcovací stolice

figure

Dva stejné válce o poloměru $R$, jejichž osy jsou rovnoběžné a leží ve vodorovné rovině ve vzdálenosti $a$, rotují opačnými směry. Na tyto válce položíme vodorovně desku délky $2a$ o hmotnosti $m$ tak, že přečnívá vpravo více než vlevo (viz obr. 2). Mezi deskou a válcem působí tření s koeficientem $μ$. Co se bude dít s deskou,

  • pokud jsou obvodové rychlosti stejně veliké,
  • pokud je obvodová rychlost levého válce dvakrát větší než obvodová rychlost pravého?

1. Série 9. Ročníku - P. lokomotivy

figure

Na obrázku je letecký snímek parních lokomotiv s oblaky dýmu, které se pohybují rovnoměrně po přímých rovnoběžných kolejích. Rychlost první parní lokomotivy je $v_{1}=50\;\mathrm{km} \cdot \mathrm{h}^{-1}$, rychlost třetí $v_{3}=70\;\mathrm{km} \cdot \mathrm{h}^{-1}$. Směry rychlostí jsou vyznačeny na obrázku. Jaká je rychlost $v_{2}$ druhé lokomotivy?

6. Série 8. Ročníku - 1. Jupiter a kometa

figure

Trajektorie planety

Kometární rodina Jupiteru vzniká následujícím způsobem (viz. obrázek). Kometa přilétá k Jupiteru z velké vzdálenosti s téměř nulovou počáteční rychlostí. Po opuštění Jupiterova gravitačního pole (přesně sféry gravitačního vlivu Jupitera), má její rychlost (vzhledem ke Slunci) přesně opačný směr než rychlost Jupitera. Poté se pohybuje opět v gravitačním poli Slunce. V jaké vzdálenosti od něj se bude nacházet perihelium dráhy komety a jaká je její oběžná doba (jaká je velikost velké poloosy dráhy komety)? Uvažujte, že Jupiter obíhá kolem Slunce po kružnici o poloměru $R=5,2\;\mathrm{AU}$.

5. Série 8. Ročníku - 1. vesmírná katastrofa

Tři planetky o stejné hmotnosti $M=10^{26}\; \textrm{g}$ jsou umístěny ve vrcholech rovnostranného trojúhelníka o straně $l=100\; \textrm{Gm}$ [gigametry]. Nemajíce počáteční rychlosti nezbývá jim než padat vstříc jisté záhubě. Určete, za jak dlouho se srazí (rozměry planetek zanedbejte).

5. Série 8. Ročníku - P. co ten skokan pořád chce

Chceme-li demonstrovat metodu řešení soustavy rovnic na našem skokanovi, budeme muset přidat další podmínku: dejme tomu, že první dopad na prkno se mu zdál příliš tvrdý; rozhodl se tedy rozkývat prkno natolik (změnit amplitudu kmitů), aby druhá srážka s prknem proběhla se zanedbatelnou vzájemnou rychlostí. Tedy jak hodnota Funkce, tak Derivace (uvedená v minulém díle) byla v okamžik srážky rovna nule. Vašim úkolem je najít potřebnou amplitudu $A_{n}$ a dobu druhého skoku $T_{n}$ (odráží se opět dole).

4. Série 8. Ročníku - 1. částice v magnetickém poli

Nabitá částice vstupuje do prostředí, ve kterém na ni působí odporová síla. Směr této síly je opačný, než směr rychlosti částice, a její velikost je rychlosti přímo úměrná. Než se částice zastaví, urazí v prostředí dráhu $l_{1}=10\;\mathrm{cm}$. Je-li v prostředí navíc homogenní magnetické pole kolmé na směr rychlosti částice, pak se částice zastaví ve vzdálenosti $l_{2}=6\;\mathrm{cm}$ od místa, kde do prostředí vstoupila. V jaké vzdálenosti $l_{3}$ od místa vstupu do prostředí se částice zastaví, když bude magnetické pole dvakrát menší?

4. Série 8. Ročníku - 4. válec kontra zeď

figure

Dřevěný válec o poloměru $R$ a hmotnosti $m$ se valil po podlaze rychlostí $v$ do okamžiku, kdy se zarazil o zeď. O jaký úhel se ještě válec pootočí, než se úplně zastaví? Koeficient tření mezi válcem a stěnou resp. podlahou je $μ$.

3. Série 8. Ročníku - 1. zasněžená

Malý Bobeš přitáhl pod kopec sáňky. Hledí na jeho vrchol, který je o $h$ metrů výše než on a vzdálený (vodorovně) $l$ metrů. Těžké sáňky o hmotnosti $m$ drhnou na čerstvém sněhu s koeficientem tření $f$. Přemýšlí, při jakém tvaru svahu by se dostal nahoru s vynaložením nejmenší práce. Co mu poradíte (dřív než tam zmrzne, filosof jeden)? Zkuste tuto práci pro zvolený tvar svahu také vypočítat.

3. Série 8. Ročníku - E. grant strýčka Skrblíka

Vašim milovaným strýčkem vám byl zadán úkol zjistit, zda jeho památeční rodinná lžička jest skutečně z ryzího hliníku. Vaše experimentální vybavení je však poněkud skromné: kromě uvedené lžíce dostanete k dispozici závaží o známé hmotnosti, dlouhé pravítko, provázek a dva hřebíky, které můžete zatlouct do zárubně dveří. Navíc zde ještě stojí kbelík plný vody. Navrhněte, výpočty podložte a hlavně proveďte měření, při kterém co nejpřesněji s pomocí jmenovaných pomůcek určíte hustotu materiálu lžičky. Uskutečněte dostatečné množství měření a na základě alespoň nějakých kalkulací také odhadněte věrohodnost vámi obdrženého výsledku.

Nápověda: Pokuste se srovnat hmotnost lžíce a závaží zavěšováním na provázek, který jste (s mírným průvisem) natáhli mezi zárubní dveří.

2. Série 8. Ročníku - P. problém liftboye

Liftboy v mrakodrapu si pověsil na stěnu svého výtahu přesné kyvadlové hodiny, aby viděl, kdy mu končí pracovní doba. Doba pohybu výtahu se zrychlením vzhůru a dolů je stejná. Zrychlení taktéž. Co si myslíte: bude mít chlapec pracovní dobu delší, kratší nebo stejnou?

2. Série 8. Ročníku - S. skokan

Skokan na můstku se odrazí z prkna rychlostí $v=5\;\mathrm{m}\cdot \mathrm{s}^{-1}$ kolmo vzhůru v okamžiku, kdy je deska maximálně prohnutá směrem dolů (o $A=30\;\mathrm{cm}$ pod rovnovážnou polohou). Za jak dlouho se opět s deskou srazí, pokud prkno kmitá s periodou $T=0,5\;\mathrm{s}$.

Srovnejte rychlost výpočtu v jednotlivých fázích (hrubé přibližování, dolaďování).

1. Série 8. Ročníku - 1. golf

figure

Model situace

Hráč golfu řeší obtížný úkol. Musí se trefit do jamky ve vzdálenosti $d$ a přitom přestřelit překážku výšky $h$. Překážka překáží ve vzdálenosti $l$ (viz obrázek). Jakou rychlostí $\textbf{v}$ a pod jakým úhlem $α$ musí ten nešťastník odpálit míček? Jak se změní řešení, stojí-li před hráčem překážka, jejíž přední strana je ve vzdálenosti $l_{1}$ a zadní v $l_{2}?$

1. Série 8. Ročníku - 2. Mňága a Žďorp

Mňága vyjíždí na kole rychlostí $15\; \textrm{km}\cdot\textrm{h}^{-1}$ z Postoloprt po přímé silnici do Kožuchova v $8$ hodin ráno a za jeho uchem se v tu chvíli probouzí pilná včela Žofka. Současně z cílové vísky vzdálené $40\; \textrm{km}$ jim naproti startuje Žďorp a nasazuje tempo $25\; \textrm{km}\cdot\textrm{h}^{-1}$. Do okamžiku, než se oba potkají, musí Žofka, která je přeci jen dvakrát rychlejší než Mňága, plnit úkol spojovatelky – donese zprávu od M. k Ž., otočí se a letí zpět. Kolik kilometrů takto nalétá do okamžiku setkání, pokud

  • je bezvětří
  • vane vítr od Kožuchova (podél silnice) o rychlosti $10\; \textrm{km}\cdot\textrm{h}^{-1}$
  • vane vítr kolmo na silnici o stejné rychlosti.

1. Série 8. Ročníku - 4. setrvačnost

V autobuse (jede z pouti a má zavřené nejen dveře, ale i okna) stojí cestující a drží na provázku svůj balónek plný helia. Autobus, který původně stál v klidu, se rozjíždí. Co se stane s balónkem? (Cestující je pevně spojen s autobusem –tj. dobře se drží.) Jakým směrem se balónek pohne? Vysvětlete souvislost se setrvačnou silou! Můžete si to také vyzkoušet.

1. Série 8. Ročníku - E. bungee-jumping

Zajisté jste slyšeli o novém druhu zábavy lidí, kteří si potřebují dokázat, jak snadné je překonat vlastní strach. Z vlastní vůle skočit z výšky třeba $50\; \textrm{m}$ přivázán jen za nohy, není to lákavé? Vaším úkolem by mělo být: laboratorně zkoumat dynamiku tohoto nového sportu (kdy se asi dostane do olympijských her?) a na základě pokusů domácky provedených učinit závěry z toho plynoucí pro člověka přivázaného na takovém laně.

Nejprve si obstaráte kus gumy přiměřené délky. Pak můžete měřit:

  • závislost maximální hloubky $h$ na délce gumy $l$, do níž se závaží hmotnosti $m$ klesne
  • závislost hloubky $h$ na hmotnosti závaží $m$ pro dvě různé délky gumy $l_{1}$, $l_{2}$. Pozor abyste nepřekročili kritickou hmotnost $M_{K}$ z bodu $c$!
  • jaká je kritická hmotnost $M_{K}$ závaží, při němž se guma délky $l$ přetrhne (tento úkol předpokládá, že máte dost experimentálního materiálu a máte též vhodnou gumu – zachovává pružné vlastnosti až do přetržení)

Pro člověka vysícího na takovém laně má značný význam maximální zrychlení na něj působící po čas letu. Pokuste se toto zrychlení určit na základě změřených výsledků.

Přejeme Vám mnoho úspěchů při řešení a hodně zábavy s praskající gumičkou!

6. Série 7. Ročníku - P. redundantní informace

Z Prahy vyjíždí v 7 hodin 30 minut rychlostí 95 km/h po dálnici do Brna černý, pečlivě umytý automobil Tatra 613, ve kterém sedí na zadním sedadle za řidičem bílý pták, velký jako pštros, ale s dlouhým a silným žlutým zobákem. Přibližně každých pět minut pták klovne řidiče do hlavy. Ten si toho sice většinou nevšímá, ale čas od času se rozzuří, popadne složené noviny, které leží na prázdném předním sedadle, zakloní se, levou rukou drží volant a pravou tluče novinami ptáka přes hlavu a křičí: „Nech už toho, ty kreténe! Ty máš opravdu ptačí mozek!“ Pták se krčí na zadním sedadle a ustrašeně vřeští, ale za pět minut klovne řidiče znovu.

Téhož dne v 8 hodin 15 minut vyjíždí z Brna do Prahy rychlostí 70 kilometrů za hodinu kamión s tureckou poznávací značkou. Neveze žádné zboží, v jeho vnitřku se nachází pouze pětačtyřicetiletý docent estetiky B. Je na zadním konci kamiónu připoutaný ke klice dveří a dívá se na divný film, promítaný na plátně, jež je umístěné na druhém konci vozu. Vidí ve filmu sám sebe, jak leží v noci ve své vile s manželkou v posteli a spí; manželka tiše vstává z postele a sestupuje do zahrady, kde na ni vzadu u plotu čekají fantastické nestvůry, jsou to tlusté žáby, velké jako pes, porostlé dlouhou vlnitou srstí, s losími parohy na hlavě a s velkými chlupatými křídly. Na špičkách paroží svítí Eliášův oheň. Žáby obletují ženu, která tu tiše stojí v bílé noční košili, dlouhé chlupy na křídlech jim přitom krásně vlají, olizují ženě jazykem tvář a kňučí radostí jako psi. Žena je něžně hladí po hlavě a tiskne je k sobě, pak se temnou zahradou rychle vrací do vily a uléhá opět do postele. Letos je tomu 20 let, co se docent B. se svou manželkou vzali.

Z Prahy do Brna je to po dálnici 202 km. V kolik hodin a na kolikátém kilometru se oba automobily minou?

Michal Ajvaz: Návrat starého varana, MF, Praha 1991, str. 50–51.

4. Série 7. Ročníku - 1. vláček

Dlouhá vlaková souprava délky $l$ jede po dráze, která z vodorovného úseku přechází ve svah se sklonem $a$. V okamžiku, kdy se vlak zastavil, byla na svahu přesně polovina vagónů. Jaká byla doba, za kterou vyjely tyto vagóny na svah. Tření zanedbejte.

4. Série 7. Ročníku - 2. kužel

figure

Hmotný bod se v tíhovém poli Země pohybuje po vnitřku kuželové plochy s vrcholovým úhlem $2α$, jejíž osa symetrie má svislý směr (viz obr. 1). V čase $t=0$ se částice nachází ve výšce $z_{0}$ a má rychlost $v_{0}$. Tato rychlost má směr tečny ke kružnici na průniku kužele s vodorovnou rovinou $z=z_{0}$.

  • Obíhá-li částice v konstantní výšce $z_{0}$, dokažte, že velikost rychlosti je určena pouze touto výškou a nezávisí na úhlu $α$.
  • Při obecném pohybu určete body obratu $z_{1}$ a $z_{2}$, tj. maximální a minimální výšku, do které částice vystoupí.

Diskutujte trajektorii částice v soustavě spojené s částicí a soustavě spojené se Zemí. Tření neuvažujte.

2. Série 7. Ročníku - P. závodník

figure
figure

V důsledku malého koeficientu tření pneumatik se automobil jedoucí po ledu nemůže pohybovat se zrychlením větším než $a=0,5\;\mathrm{m}\cdot \mathrm{s}^{-2}$. Podle pravidel závodu se řidič musí dostat z bodu A do B ve vzdálenosti $x=375\;\mathrm{m}$, přičemž počáteční rychlost $v=10\;\mathrm{m}\cdot \mathrm{s}^{-1}$ jest ve směru kolmém ke spojnici AB. Určete nejmenší čas, za který toho lze dosáhnout. Jak se změní výsledek, bude-li cílem bod C (viz obr. 1), vzdálenost B a C je $y=200\;\mathrm{m}$.

1. Série 7. Ročníku - 4. korálek

figure

Na tyči zanedbatelné hmostnosti o celkové délce $4a$ jsou navlečeny ve vzdálenosti $a$ od osy otáčení dvě koule o hmotnosti $m$ (viz obr. 3). Na obou koncích tyče jsou umístěny dokonale pružné odrazné destičky. Tyč je roztočena na úhlovou rychlost $ω_{0}$, a poté jsou uvolněny obě koule. Za předpokladu, že se tyč nadále pohybuje volně a bez tření, určete:

  • Po jaké trajektorii se budou pohybovat obě kuličky vzhledem k pozorovateli v inerciální soustavě.
  • Jak se bude měnit úhlová rychlost soustavy $ω$ v závislosti na čase.
  • Jak by se změnili výsledky předešlých úloh, kdybychom udržovali (např. pomocí motoru) úhlovou rychlost stále na hodnotě $ω_{0}?$

1. Série 7. Ročníku - P. fošna

figure

Čtvercová deska o straně délky $a$ (viz obr. 4) je upevněna na ose procházející jejím středem ve směru rovnoběžném s jednou ze stran. Ve vzdálenosti $c$ od této osy je na ní položeno malé tělísko hmotnosti $m$. Deska začne kmitat s nevelkou amplitudou kolem vodorovné polohy s frekvencí $ω$. Určete dobu (je mnohem větší než perioda kmitů), za kterou tělísko spadne z desky, je-li koeficient tření mezi deskou a tělískem $μ$.

5. Série 2. Ročníku - 1. závažíčko na kouli

Na vrcholu koule poloměru $R$ leží závažíčko, které se v čase nula začne pohybovat. V jaké výšce a kdy se oddělí od povrchu koule?

4. Série 2. Ročníku - 1. vozík

figure

Model tří těles

Mějme soustavu vyobrazenou na obrázku. Jakou silou $\textbf{F}$ musíme působit, aby se těleso II nepohybovalo vůči tělesu I. Máte zadané hmotnosti $m_{I}$, $m_{II}$ a $m_{III}$ všech tří těles a veškerá tření zanedbávejte.

4. Série 2. Ročníku - 2. mouchy

Postavme na váhu uzavřenou sklenici s několika muškami. Kdy nám váha ukazuje více, když mušky ve sklenici

  • létají
  • usedly
  • v obou případech váha ukazuje stejně

Proč?

3. Série 2. Ročníku - 1. skateboardista

figure

Skateboardista

Z jaké výšky se může pustit jezdec na skateboardu po dráze na obrázku, aby to nebylo zdraví škodlivé?

3. Série 2. Ročníku - 3. síla přitažlivosti

Kdyby celý prostor byl prázdný mimo dvou kapek vody, budou se tyto kapky přitahovat podle Newtonova gravitačního zákona. Nyní předpokládejme, že celý prostor je vyplněný vodou s výjimkou dvou bublin (obrázek). Jak se bubliny budou pohybovat?

3. Série 2. Ročníku - 4. jak hluboká je studna?

Hloubku studny chceme určit s relativní chybou $2\; \%$ tak, že do ní pustíme kámen a měříme dobu, za kterou uslyšíme pád kamene na dno od jeho vypuštění. Při jaké hloubce studny už musíme uvažovat rychlost šíření zvuku?

2. Série 2. Ročníku - 3. jak rychlá je lokomotiva?

figure

Snímek lokomotiv

Na obrázku je letecký snímek parních lokomotiv s oblaky páry pohybujících se rovnoměrně po přímých rovnoběžných kolejích. Rychlost první lokomotivy je $v_{1}=50\;\mathrm{km}\cdot \textrm{h}^{-1}$, rychlost druhé $v_{2}=70\;\mathrm{km}\cdot \textrm{h}^{-1}$. Směry rychlostí jsou vyznačeny na obrázku. Jaká je rychlost třetí lokomotivy?

2. Série 2. Ročníku - E. homole

Sypeme-li přášek (suchý písek, mouku apod.) volně na jedno místo, vznikne kužel s vrcholovým úhlem $α$. Co lze o tomto úhlu pokusně zjistit? Umíte výsledek nějak zdůvodnit?

1. Série 2. Ročníku - 1. člověk na voru

figure

Člověk stojí uprostřed voru na vodní hladině a v určité vzdálenosti je tyč, kterou chce chytit. Jak daleko může být tyč, aby k ní po voru mohl dojít? Zanedbejte nejdříve tření mezi vorem a vodou. Jak se situace změní bez tohoto předpokladu? Hmotnost člověka je $75\; \textrm{kg}$, hmotnost voru $50\; \textrm{kg}$.

1. Série 2. Ročníku - 2. Ptolemaios a Koperník

Vraťme se ke středověkému sporu. Roku 1543 ve svém díle De Revolutionibus orbium coelestium Mikuláš Koperník předkládá svůj heliocentrický výklad světa, kterým popírá zažitou geocentrickou představu zformulovanou nejjasněji Ptolemaiem v díle Megalé Syntaxis v 2. století n. l. Umožněme myšlenkově oběma astronomům setkání, na kterém by mohli obhajovat svůj názor.

Koperník: „V mém výkladu je Slunce nepohyblivé a kolem něj se pohybují všechny planety včetně Země po kruhových drahách, což je mnohem jednodušší než popis pohybu planet v geocentrické představě.“ (Eliptické dráhy přinesl až o 60 let později Kepler.)

Co na to Ptolemaios? Kdyby byl hodně chytrý, odpověděl by třeba toto: „Tvůj názor je odvážný, mladíku, (Koperník byl o 1400 let mladší), ale myslím, že nepřináší nic nového, jenom zmatek v ustálených představách. I kdyby podle Tebe Země obíhala kolem Slunce, když se postavíme na Zemi, což stále děláme, uvidíme, že Slunce se pohybuje relativně vůči Zemi a to po kružnici. Pohyb je relativní!“ (Vskutku, pokud se nám pohyb jednoho tělesa z druhého zdá kruhový, tak opačně z prvního se pohyb druhého bude zdát opět kruhový – ověřte si to.) „Zapomeňme třeba na ostatní planety a mějme jen Slunce a Zemi. Můžeš i pak tvrdit, že Země obíhá kolem Slunce a ne naopak?“

Koperník: „Ano, i pak. Slunce stojí vůči stálicím, vůči hvězdám, a Země ne.“

Ptolemaios: „A proč by se stálice také nemohly pohybovat kolem Země? Copak Země středem vesmíru není lákavá myšlenka?“

Vidíme, že pan Koperník se dostává do úzkých. Vždyť Ptolemaios argumentuje tak revolučními a přitažlivými myšlenkami, jako že pohyb je relativní. My bychom se však přiklonili spíš ke Koperníkovi. Máme proti němu ale výhodu – víme, s čím přišel o necelých 150 let později pan Newton. Přizvěme ho k debatě. Jakými slovy vyřeší spor obou astronomů a přesvědčí Ptolemaia, zatím ale neřekneme. Co byste na místě Newtona řekli vy?

1. Série 2. Ročníku - 3. držák

figure

Držák na zavěšení lehkých břemen, který lze lehce připevnit v libovolné výšce, je často velmi praktický. Jeden takový držák je na obrázku i s rozměry. Může se vertikálně posunovat po tyči a udržuje se v určité úrovni silou tření. Koeficient statického tření mezi držákem a tyčí je $0,30$, tíha závaží zavěšeného ve vzdálenosti $x$ od tyče je $50$krát větší než tíha držáku. Jaká je minimální hodnota $x$, při které držák ještě nesklouzne dolů?

4. Série 1. Ročníku - 4. netradiční ohřívání čaje

Kolik nábojů je zapotřebí k uvaření šálku čaje? K dispozici máte ocelovou polní konvičku o hmotnosti $4\; \textrm{kg}$ a samopal. Náboje mají hmotnost $16\; \textrm{g}$ a rychlost $700\; \textrm{m}\cdot \textrm{s}^{ -1}$.

3. Série 1. Ročníku - 1. film

Filmový pás zachycuje padající těleso se zrychlením směrem dolů. Pustíme-li film pozpátku, bude mít zrychlení tělesa směr

  • nahoru
  • dolů

Zdůvodněte.

3. Série 1. Ročníku - 2. planeta liliputánů

Představte si, že do rána se všechny vzdálenosti a rozměry předmětů zvětší desetkrát, přičemž jejich hmotnost se nezmění. Jaké by byly důsledky?

3. Série 1. Ročníku - 3. tramvaj

Ve stojící tramvaji visí u svislé desky na niti délky $l$ citrón o hmotnosti $m$ (předpokládáme, že rozměry citrónu jsou velmi malé v porovnání s délkou niti). Tramvaj se rozjede se zrychlením $a$, které můžeme považovat za konstantní. Spočtěte, kam až toto kyvadlo vykývne (jaký maximální úhel bude svítat s deskou) a kdy citrón opět ťukne do desky.

3. Série 1. Ročníku - E. přetahovaná

Na kulatý sloup či tyč je namotáno několik závitů lana. Z jedné strany drží lano třeba malé dítě a táhne za něj malou silou $F_{d}$ (třeba $1\; \textrm{N}$). Z druhé strany táhne za lano obr. Jak velkou silou může obr za lano táhnout, aniž by dítě na druhém konci „přetáhl“? Předpokládáme, že sloup se nemůže otáčet.

Zkuste výsledek odvodit teoreticky, ale zejména vyšetřete daný problém experimentálně. (Jaká je závislost síly na materiálech sloupu a lana, velikosti sloupu, počtu závitů – a má např. smysl „neceločíselný“ počet závitů? Atd., atd. Obra i dítě můžete nahradit jinými pomůckami, sloup také.)

2. Série 1. Ročníku - 1. silák

figure

Uvolněné lano

figure

Vodorovně napnuté lano

Za devatero horami je země, v níž se síla měří v jednotkách zvaných $\textrm{dag}$. Na pouti tam silák napíná oběma rukama lano, na němž je zavěšen telefonní seznam o tíze $10\; \textrm{dagů}$. (Kdyby silák držel oba konce provazu u sebe, napětí v obou částech lana by bylo $5\; \textrm{dagů}$.) Jaké bude napětí v obou částech lana, když silák roztáhne lano do vodorovné polohy?

  • $5\; \textrm{dagů}$
  • $10\; \textrm{dagů}$
  • $20\; \textrm{dagů}$
  • více než milión $\textrm{dagů}$

2. Série 1. Ročníku - 2. čluny

figure

Pohled na čluny

Obrázek ukazuje dva čluny pohybující se po hladině jezera. Z obálky vln soudíme, že

  • obě lodi plují větší rychlostí, než je rychlost povrchových vln, přičemž loď I pluje rychleji než loď II
  • loď I pluje rychleji než loď II, ale nemusí nutně plout větší rychlostí, než je rychlost povrchových vln
  • ani a), ani b)

2. Série 1. Ročníku - 3. Křemílek

figure

Miska s Křemílkem a kuličkou

Křemílek chce dostat z misky těžkou kuličku. Stěny misky jsou však příliš strmé, aby ji vykulil přímo. Svými silami

  • může dostat kuličku ven. (Jak?)
  • nemůže dostat kuličku ven.

2. Série 1. Ročníku - S. odpor působící na auto

Spočtěte, jak bude s časem klesat rychlost auta brzděného jen odporem vzduchu. Auto jede po rovině na neutrál a zanedbáme valivé tření kol atd. – vše kromě odporu vzduchu.

Návod: Síla, kterou je auto brzděno, je v daném případě zhruba úměrná druhé mocnině jeho rychlosti: $F_{brzd}=C\cdot v$. (Pro běžný automobil lze odhadnout $C=(1–2)\; \textrm{m}^{-2}\cdot \textrm{s}$.) Uvažte, že během krátkého časového intervalu $Δt$ se síla působící na automobil příliš nezmění a jeho pohyb tedy můžeme brát jako rovnoměrně zpomalený. Celkovou změnu rychlosti za delší čas dostaneme poskládáním změn v jednotlivých „kouscích“ $Δt$.

Problém tak lze velmi dobře simulovat na mikropočítači, ale můžete využít i obyčejnou kalkulačku a hodnoty psát na papír, vynášet do grafu apod. Úlohu si můžete i rozšířit a počítat též ujetou dráhu, případně uvažovat změněné podmínky: jízdu z kopce či do kopce, jízdu pod vodou ($Cρ_{prostředí}$), vynalézavosti se meze nekladou.

1. Série 1. Ročníku - 2. antiraketa

figure

Model nádoby

Uvažujme nádobu s otvorem dle obrázku. Uniká-li stlačený vzduch z nádoby ven, nádoba se pohybuje. Jde o princip analogický raketovým motorům. Představme si nyní opačnou situaci. Nádobu, v níž bylo vakuum, umístěnou ve vzduchu, který do nádoby proudí malým otvorem. Nádoba se bude pohybovat:

  • doleva
  • doprava
  • nebude se pohybovat

1. Série 1. Ročníku - E. odpor vzduchu

Pohybuje-li se těleso v kapalném nebo plynném prostředí, působí na něj prostředí odporující silou, závislou na rychlosti tělesa. Navrhněte nějakou jednoduchou metodu (realizovatelnou doma, ve škole atp.), kterou by bylo možno alespoň přibližně určit závislost rychlosti tělesa pohybujícího se ve vzduchu. Navržené experimenty proveďte a zhodnoťte výsledky.

Návod: Předpokládejte závislost tvaru $F = av^{b}$.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz