Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (79)biofyzika (18)chemie (20)elektrické pole (67)elektrický proud (70)gravitační pole (76)hydromechanika (135)jaderná fyzika (40)kmitání (52)kvantová fyzika (26)magnetické pole (38)matematika (85)mechanika hmotného bodu (273)mechanika plynů (80)mechanika tuhého tělesa (206)molekulová fyzika (66)geometrická optika (73)vlnová optika (58)ostatní (154)relativistická fyzika (35)statistická fyzika (20)termodynamika (139)vlnění (47)

molekulová fyzika

(5 bodů)6. Série 35. Ročníku - 3. povětrná bublinka

Bublifukem vytvoříme malou mýdlovou bublinku. Jakou rychlostí bude padat k zemi? Bublinka má vnější poloměr $R$ a plošnou hustotu $s$.

Karel dělal bublinky ve vaně.

(10 bodů)4. Série 35. Ročníku - S. svítíme

  1. V jaké vzdálenosti od povrchu terče (předpokládejte, že je z uhlíku a pro laser o vlnové délce $351 \mathrm{nm}$) se nachází kritický povrch a v jaké vzdálenosti dochází ke vzniku dvouplazmonového rozpadu, pokud je charakteristická délka plazmatu1) $50 \mathrm{\micro m}$? Dále předpokládejte
  1. exponenciální pokles hustoty plazmatu s rostoucí vzdáleností od terče,
  2. lineární pokles hustoty plazmatu s rostoucí vzdáleností od terče.
  1. Jakou musí mít elektrony energii, aby prošly od kritického povrchu ke skutečnému povrchu terče? Pro dosah elektronů v uhlíkovém plazmatu využijte empirický vztah $R = 0{,}933~4 E^{1{,}756~7}$, kde $E$ je v $\mathrm{MeV}$ a $R$ je v $\mathrm{g.cm^{-2}}$.
  2. Na jaké délce se elektrony v elektrickém poli plazmové vlny urychlí na tyto energie?
  3. Jaké vlnové délky rozptýleného světla můžeme pozorovat v případě stimulovaného Ramanova rozptylu pro laser o vlnové délce $351 \mathrm{nm}$?
1)
Hustota plazmatu $n_e$ v závislosti na vzdálenosti od terče se typicky vyjadřuje jako funkce $n_e = \f {f}{\frac {x}{x_c}}$, kde $x$ je vzdálenost od terče a $x_c$ je tzv. charakteristická delka plazmatu, která představuje škálovací parametr od terče.

(13 bodů)2. Série 35. Ročníku - E. řídký nebo hustý líh

Změřte závislost hustoty roztoku lihu ve vodě na jeho objemové koncentraci ve vodě. Zařaďte pro srovnání i měření čistého lihu a čisté vody.

Pozor na správné směšování lihu s vodou – nezapomínejte na to, že objem slité vody a lihu není přesně součtem jejich původních objemů.

Karel si říkal, že by si účastníci mohli trochu čichnout.

(10 bodů)2. Série 35. Ročníku - S. stlačujeme

Jakou energii musí mít laserový impuls trvající $10 \mathrm{ns}$, aby jím vytvořená rázová vlna byla schopná ohřát plazma na teplotu, při níž může dojít k termojaderné fúzní reakci? Jakou hustotu bude mít stlačené palivo? Poznámka: Přepokládejte, že počáteční plazma je jednoatomový ideální plyn.

(10 bodů)1. Série 35. Ročníku - S. začínáme slučovat

  1. Spočítejte energetický výtěžek následujících reakcí a kinetické energie produktů reakce

\[\begin{align*} {}^{2}\mathrm {D} + {}^{3}\mathrm {T} &\rightarrow {}^{4}\mathrm {He} + \mathrm {n}  ,\\ {}^{2}\mathrm {D} + {}^{2}\mathrm {D} &\rightarrow {}^{3}\mathrm {T} + \mathrm {p}  ,\\ {}^{2}\mathrm {D} + {}^{2}\mathrm {D} &\rightarrow {}^{3}\mathrm {He} + \mathrm {n}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {T} &\rightarrow {}^{4}\mathrm {He} + 2\mathrm {n}  ,\\ {}^{3}\mathrm {He} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + 2\mathrm {p}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + \mathrm {n} + \mathrm {p}  ,\\ {}^{3}\mathrm {T} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + {}^{2}\mathrm {D}  ,\\ \mathrm {p} + {}^{11}\mathrm {B} &\rightarrow 3\;{}^{4}\mathrm {He}  ,\\ {}^{2}\mathrm {D} + {}^{3}\mathrm {He} &\rightarrow {}^{4}\mathrm {He} + \mathrm {p}  . \end {align*}\]

  1. Pomocí grafu rychlosti výtěžku v textu seriálu pro vámi zvolenou teplotu odvoďte Lawsonovo kritérium pro dobu udržení inerciální fúze deuteria s deuteriem, protonu s borem a deuteria s heliem 3 a pro jednotlivé případy určete součin velikosti palivové peletky a hustotu stlačeného paliva. Mají tyto reakce nějakou výhodu oproti tradiční DT fúzi?
  2. Určete, jak by vypadalo Lawsonovo kritérium pro nemaxwellovské rozdělení rychlostí, kdyby kinetická energie částic byla
  1. $E\_k = k\_B T^{\alpha }$,
  2. $E\_k = a T^3 + b T^2 + c T$.

Byla by takováto fúze vůbec realizovatelná? Pokud ano, jaké by mělo být palivo (fúzní reakce), jak velká by měla být palivová peletka a na jakou hustotu by se měla stlačit?

(10 bodů)4. Série 34. Ročníku - P. pták Fykosák na dovolené

Jak by fungovalo letectví na jiných planetách (s atmosférou)? Zajímejte se hlavně o proudová letadla. Které parametry by působily pozitivněji a které negativněji než na Zemi?

Karel byl v muzeu letectví v Košicích.

(12 bodů)3. Série 34. Ročníku - E. difuze

Určitě jste ve škole slyšeli o tepelném pohybu molekul, jako je difuze či Brownův pohyb. Změřte časovou závislost velikosti barevné skvrny ve vodě a vypočtěte difuzní konstantu. Proveďte měření pro několik různých teplot a sestrojte graf teplotní závislosti difuzní konstanty. Jak byste mohli zařídit, aby byla teplota v průběhu každého měření konstantní?

Káťa si užívá praktika i v době karantény.

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?

\setcounter {enumi}{2}

  1. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$. Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu a spočítejte velikosti sil, které na ně působí.
  2. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  3. Mějme šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.

Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

(6 bodů)6. Série 29. Ročníku - S. závěrečná

 

  • Najděte v tabulkách nebo na internetu, jak se změní entalpie a Gibbsova energie při reakci

$$2\mathrm{H}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{H}_2\mathrm{O}\, ,$$ kde jde o přeměnu plynů na plyn a odehrává se při standardních podmínkách. Vypočítejte také, jak se změní entropie při takovéto reakci. Výsledky udávejte vztažené na jeden mol.

  • Pro fotonový plyn platí, že tok energie skrze plochu je dán vztahem

$$j=\frac{3}{4}\frac{k_{\mathrm{B}}^4 \pi^2}{45 \hbar^3 c^3}cT^4\, .$$ Dosaďte hodnoty konstant a porovnejte výsledek se Stefanovým-Boltzmannovým zákonem.

  • Vypočítejte vnitřní energii a Gibbsovu energii fotonového plynu. Dále pomocí vnitřní energie vypočítejte závislost teploty fotonového plynu na objemu při adiabatickém rozpínaní, tedy při procesu s $\delta Q=0$.

Nápověda: Zákon pro adiabatický děj s ideálním plynem jsme odvodili v druhém dílu seriálu.

  • Vezměme si fotonový plyn. Ukažte pro $\delta Q/T$, že pokud ho vyjádříme jako

$$\delta Q / T = f_{,T} \;\mathrm{d} T + f_{,V} \mathrm{d} V \, ,$$ tak funkce $f_{,T}$ a $f_{,V}$ splňují nutnou podmínku na existenci entropie, tedy že $$\frac{\partial f_{,T}(T, V)}{\partial V} = \frac{\partial f_{,V}(T, V)}{\partial T} $$

Janči se pokusil vymyslet jednodušší úlohu než posledně.

(2 body)5. Série 29. Ročníku - 1. už to teče

Tenký drát s odporem $R=100\;\mathrm{mΩ}$ a délkou $l=1\;\mathrm{m}$, který je připojen ke zdroji stejnosměrného napětí $U=3\;\mathrm{V}$, obsahuje ve svém objemu $N=10^{22}$ volných elektronů, kterými přispívá k toku elektrického proudu. Určete, jak velkou průměrnou (přesněji střední) rychlostí se elektrony v drátu pohybují.

Mirek už zase slyšel, že částice ve vodiči tečou rychlostí světla.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner neuron-logo.jpg

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz