Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (68)biofyzika (16)chemie (18)elektrické pole (60)elektrický proud (64)gravitační pole (69)hydromechanika (130)jaderná fyzika (35)kmitání (42)kvantová fyzika (25)magnetické pole (30)matematika (78)mechanika hmotného bodu (226)mechanika plynů (79)mechanika tuhého tělesa (194)molekulová fyzika (59)geometrická optika (67)vlnová optika (48)ostatní (141)relativistická fyzika (34)statistická fyzika (18)termodynamika (122)vlnění (43)

astrofyzika

(10 bodů)6. Série 33. Ročníku - S. být Sibylou ze Sáby…

U všech částí této úlohy po vás chceme, abyste hodnoty následujích veličin alespoň řádově odhadli a svoje odhady náležitě zdůvodnili. Pokud byste někde našli správné hodnoty, můžete je uvést pro srovnání, ale samotné nebudou akceptované jako řešení. Hodnotit se bude především dobře popsaný postup.

  1. Jaký nejmenší objem potřebujeme k uchování $1 \mathrm{GB}$ opakovaně čitelných informací při použití stávajících technologií?
  2. Kolik uhlí spotřebuje ročně uhelná elektrárna, pokud má stálý elektrický výkon $100 \mathrm{MW}$?
  3. Jak velké musí být těleso, aby dokázalo rozbít planetu podobnou Zemi na několik kusů tím, že do ní narazí?
  4. Kolik energie celkem člověk „spotřebuje“ za celý život? Včetně jídla, dopravy a všech dalších vymožeností, které využívá.
  5. Jak dlouho bychom museli svítit laserem na sirku, aby vzplála?

Bonus: Co nejpřesněji odhadněte průměrný čas odeslání finální verze této úlohy přes webový upload FYKOSu. Řešení zaslaná poštou neuvažujte. Určující čas je dle serveru.

Bonus II: Připomínáme, že můžete získat body za korektury zadání a řešení úloh tohoto ročníku. Navíc můžete získat jeden bod za to, když ke svému řešení připojíte zpětnou vazbu k letošnímu seriálu. Přišla vám lepší forma ne-zcela navazujících témat? Chybělo vám něco, co bychom mohli dodatečně doplnit na web? Jaké téma byste chtěli v příštím ročníku?

(3 body)4. Série 33. Ročníku - 1. čibonaut

Máme kosmonauta s hmotností $M$, který se v beztížném stavu vznáší ve vzdálenosti $l$ od stěny vesmírné stanice. Najednou se rozhodne, že těžké nářadí s hmotností $m$, které dosud držel v ruce, hodí po stanici ve směru kolmém na její stěnu. V jaké vzdálenosti od stěny kosmonaut bude, až do ní nářadí narazí?

Karel chtěl zadat tento název úlohy.

(10 bodů)4. Série 32. Ročníku - P. V-1 ve vesmíru

Mezihvězdný prostor není prázdný, nýbrž obsahuje nepatrné množství hmoty. Uvažujte jen vodík, potřebnou hustotu si vyhledejte. Mohla by existovat kosmická loď, jež by „nasávala“ vodík před sebou a využívala energii z něj? Jak rychlá/velká by musela být, aby udržela termojadernou fúzi jen z přijatého vodíku? Jaké jiné překážky realizace je rozumné uvažovat?

Kryptofašismus → Červený trpaslík → pohon → nápor → V-1 a hezky se to uzavírá.

(12 bodů)1. Série 32. Ročníku - E. hodinová

Změřte délku jednoho dne. Jedno souvislé měření však nemůže trvat déle než jednu hodinu (pro statistickou přesnost však měření opakujte).

Jáchym měl hodinu do deadlinu.

(10 bodů)1. Série 32. Ročníku - P. strašná zima

Některé mlhoviny tvořené plynem z hvězd, např. Bumerang, mají nižší teplotu než reliktní záření, tedy vlastně jsou chladnější než vesmír. Jak je to možné? Pokuste se stanovit podmínku na to, aby se plyn vyvrhovaný horkou hvězdou ochladil na teplotu nižší, než je reliktní záření.

Karel nebyl spokojen s tvrzením, že všude ve vesmíru je teplota alespoň reliktního záření.

(9 bodů)6. Série 31. Ročníku - P. kompenzace vesmírné expanze

Podle současných pozorování a vesmírných modelů se zdá, že vesmír se rozpíná a rychlost rozpínání se zvyšuje. Co kdyby to tak nebylo? Co kdyby byl vesmír stále stejně velký, ale měnily by se fyzikální zákony/konstanty? Jak by se musely konstanty měnit, aby se nám zdálo, že se vesmír rozpíná, jak ukazují pozorování? Popište co nejvíce zákonů, které by se musely měnit.

Karel je zvědavý, jestli dokážete kompenzovat zvětšující se vesmír.

(9 bodů)4. Série 31. Ročníku - P. Voyager II a Voyager I žijí!

Máme nějaký satelit, který chceme vypustit ven ze Sluneční soustavy. Vypouštíme ho z oběžné dráhy Země tak, že po nějakých korekcích dráhy získá rychlost, která je vyšší než úniková rychlost ze Sluneční soustavy. Jaká je pravděpodobnost, že dojde ke kolizi sondy s nějakým kosmickým materiálem s průměrem větším než $d = 1 \mathrm{m}$ před opuštěním Sluneční soustavy?

Karel si říkal, proč ta NASA tuhle možnost ani neuvažuje…

(3 body)2. Série 31. Ročníku - 2. irradiace solární elektrárny

Solární konstanta, či správněji solární irradiace, je tok energie přicházející ze Slunce ve vzdálenosti Země od Slunce. Nejde o konstantu, ale uvažujme, že má hodnotu $P = 1\,370\,\mathrm{W\cdot m^{-2}}$. Uvažujme, že Země obíhá Slunce po kružnici a sklon zemské osy vůči kolmici k její oběžné rovině je $23{,}5\mathrm{\dg}$. Jaký bude maximální výkon zachycený solárním panelem o ploše $S= 1\,\mathrm{m^2}$ o letním a zimním slunovratu, pokud panel leží na rovném povrchu Země v Praze? Uvažujte, že ani atmosféra ani budovy nijak neovlivní měření.

Karel si pustil Crash Course Astronomy.

(6 bodů)2. Série 31. Ročníku - 3. pozorovací

Jakou část povrchu kulové planety není možné vidět ze stacionární oběžné dráhy planety (taková dráha, že se obíhající objekt nachází stále nad stejným bodem na planetě), která má hustotu $\rho $ a periodu rotace $T$?

Filip prechádzal nevidené úlohy z náboja.

(6 bodů)2. Série 31. Ročníku - 4. jaderný odpad nikdy více

Představme si, že máme něco (například jaderný odpad) a chceme se toho zbavit. Těleso dostaneme na oběžnou dráhu Slunce shodnou s oběžnou dráhou Země, ale dostatečně daleko od Země, abychom mohli gravitační působení Země nadále zanedbávat. Otázka je, jaký způsob zbavení se inkriminovaného předmětu by nás stál kolik energie a který postup by byl tedy nejvýhodnější. Varianty jsou

  • Hodit to do Slunce. Stačí, aby se to dostalo na sluneční povrch a bude to dostatečně usmažené.
  • Převést to na kruhovou dráhu v Hlavním pásu (pás planetek mezi Marsem a Jupiterem).
  • Vyhodit to zcela ze Sluneční soustavy.

Karel přemýšlel nad tím, co je vlastně SEO a narazil na úlohu.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz