Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (66)biofyzika (16)chemie (18)elektrické pole (58)elektrický proud (61)gravitační pole (66)hydromechanika (126)jaderná fyzika (34)kmitání (40)kvantová fyzika (25)magnetické pole (29)matematika (78)mechanika hmotného bodu (219)mechanika plynů (79)mechanika tuhého tělesa (190)molekulová fyzika (59)geometrická optika (65)vlnová optika (47)ostatní (139)relativistická fyzika (33)statistická fyzika (18)termodynamika (118)vlnění (43)

statistická fyzika

(10 bodů)2. Série 33. Ročníku - S. směs souřadnic a grafiky

figure

  1. Určete, kolik procent první stránky vzorového řešení úlohy 26-IV-5 zabírá černá barva. Řešení této úlohy najdete na https://fykos.cz/_media/rocnik26/ulohy/pdf/uloha26_4_5.pdf.
  2. Představte si, že máte tužku, jejíž tuha má poloměr $r=0{,}8 \mathrm{mm}$. Tuha je vyrobena z grafitu v šesterečné soustavě, kde vzdálenost atomů uhlíku v jedné vrstvě je rovna $a = 2{,}46 \cdot 10^{-10} \mathrm{m}$ a jednotlivé vrstvy jsou od sebe vzdáleny $c = 6{,}71 \cdot 10^{-10} \mathrm{m}$. Jakou délku tuhy spotřebujete na pomalování celé čtvrtky A4, pokud se papír při barvení pokryje průměrně $100$ vrstvami tuhy?
  3. Na obrázku je zobrazena stabilní tyčová soustava, která se nachází v tíhovém poli se zrychlením $g$.Nejtlustší linka znázorňuje dokonale tuhé tyče zanedbatelné hmotnosti. Na konci těchto tyčí je na nehmotném provázku upevněno závaží o hmotnosti $m$ (na obrázku zobrazeno středně tlustou linkou). Tenké čáry symbolizují délky tyčí. Platí, že $\alpha + \beta = 45\dg $. Tyč mezi úhly $\alpha $ a $\beta $ půlí horní tyč. Tyče mohou působit silou pouze ve svém směru (žádná složka není kolmá na tyč). Tyče jsou v místech dotyku s levou stěnou pevně upevněny. Určete, které tyče jsou namáhány v tlaku a které v tahu, a spočítejte velikosti sil, které na ně působí.
  4. Uvažujme spirálu, která začíná v počátku soustavy souřadné a odvíjí se rovnoměrně a pravotočivě. Vzdálenost mezi jednotlivými závity $a$ je konstantní. Popište pohyb po této spirále ve vhodných souřadnicích.
  5. Mějme levotočivou šroubovici, která se odvíjí rovnoměrně. Šroubovice má konstantní poloměr $R$ a konstantní vzdálenost mezi závity $h$. Popište pohyb po šroubovici ve vhodných souřadnicích a určete, jaká je délka jednoho závitu této šroubovice.
  6. Bonus: Vymyslete nebo najděte (a citujte) souřadnice, které nejsou v knihovničce FO a byly by vhodné pro popis nějakého fyzikálního problému (uveďte, jakého). Souřadnice popište převodem z kartézských souřadnic na vámi vybrané a zpět. Dále ukažte, jak lze ve vašich souřadnicích obecně určit vzdálenost dvou bodů.

Karel generoval problémy.

(10 bodů)6. Série 32. Ročníku - P. dálničně-bezpečnostní problém

  • Kolik aut musí projet za jednotku času po silnici či dálnici, aby byla silnice pod auty suchá, pokud prší?
  • Kolik aut musí projet za jednotku času po silnici či dálnici, aby na silnici nebyl žádný sníh a led, pokud sněží? Teplota dopadajícího sněhu je konstantní a srovnatelná s okolím, několik málo $\jd {K}$ pod $0\;\mathrm{\C }$.

Uvažujte, že prší nebo sněží nějaký konstantní objem vody na jednotku plochy za jednotku času.

Karel jel po dálnici.

(6 bodů)3. Série 31. Ročníku - 3. IDKFA

Vypálili jste na impa z plazmové pušky, která střílí stabilní shluk částic s rovnoměrným rozdělením podélné rychlostí v intervalu $\langle v_0, \; v_0+\delta v\rangle$ (příčná rychlost je nulová) a s celkovou energií $E_0$. Hlaveň pušky má průřez $S$ a pulz trvá nekonečně krátký čas. Jak daleko musí imp stát, aby se mu nic nestalo? Předpokládejte, že jeho kůže bez problémů uchladí na malém prostoru tepelný tok $q$.

Příklad byl mírně pozměněn, neboť jsme neodhadli jeho náročnost.

Na DOOMa si vzpomněl.

(3 body)0. Série 31. Ročníku - 2. Carnotův počítač

Spočítejte účinnost procesoru, kterou definujeme pomocí snížení entropie dat a tepelného výkonu. Veškeré potřebné údaje si dohledejte.

(9 bodů)4. Série 30. Ročníku - P. statistikův denní chléb

Známe to všichni, krajíc chleba namazaný medem nebo marmeládou, zakousneme se a najednou je kapka mazadla na ruce a jsme za prasata. Spočítejte, jak závisí pravděpodobnost, že v krajíci bude díra skrz naskrz, v závislosti na jeho tloušťce. Model kynutí těsta necháme na vás. (Třeba rovnoměrně rozmístěné bubliny s exponenciálně rozděleným poloměrem je dobrý model.)

Michal se pobryndal.

(2 body)5. Série 29. Ročníku - 2. mnohočásticová

Mějme nádobu, která je pomyslně rozdělena na dvě shodné disjunktní oblasti $\mathrm{A}$ a $\mathrm{B}$. V nádobě je $n$ částic, z nichž se každá nachází s pravděpodobností $50\; \%$ v části $\mathrm{A}$ a s pravděpodobností $50\; \%$ v části $\mathrm{B}$. Určete, s jakou pravděpodobností bude v části $\mathrm{A}$ $n_{\mathrm{A}}=0,\! 6 n$, resp. $n_{\mathrm{A}}=1+n/2$ částic. Řešte pro $n=10$ a $n=N_{\mathrm{A}}$, kde $N_{\mathrm{A}}≈6 \cdot 10^{23}$ je Avogadrova konstanta.

Mirek má rád zákon velkých čísel.

(2 body)6. Série 26. Ročníku - 1. ne zcela chutné pití vody

Pták Fykosák jednoho dne vypil 2 dcl vody. Uběhlo milénium a všechna voda na Zemi se stihla mezitím promíchat. Když teď pták znovu vypije 2 dcl vody, kolik molekul z vody, co vypil právě před miléniem, v nich bude?

Karel se bojí cholery.

(2 body)1. Série 26. Ročníku - 2. odhal svoje vnitřnosti!

Odhadni počet elektronů ve svém těle.

Karel si hraje s vnitřnostmi.

6. Série 19. Ročníku - S. poslední úloha

  1. Kvalitativně popište, jak se chová tepelná kapacita Isingova modelu s nulovým vnějším magnetickým polem v okolí kritické teploty.
  2. Podobným postupem, jako jsme vypočítali chování magnetizace $m$ v okolí kritického bodu, určete chování susceptibility $χ$ ($lim_{B→0}∂m⁄∂B$) a závislost magnetizace na magnetickém poli při kritické teplotě.
  3. Ukažte, že model mřížového plynu vede ke kondenzaci a určete kritickou teplotu.
  4. Prozkoumejte model binární slitiny.

Zadal autor seriálu Matouš Ringel.

5. Série 19. Ročníku - S. fermiony a bosony

  1. Najděte hustotu stavů $g(E)$ pro volné elektrony a pomocí ní určete vztah mezi počtem elektronů a Fermiho energií při nulové teplotě. Zjistěte, jak musí záviset Fermiho energie na teplotě (při nevelkých teplotách), aby byl počet elektronů konstantní. Nakonec odhadněte počet excitovaných elektronů při pokojové teplotě.
    Nápověda: Nechte se inspirovat minulými díly seriálu a úlohami k nim.
  2. Určete závislost μ na teplotě při malých teplotách a konstantním počtu částic v systému stejných bosonů. Najděte teplotní závislost počtu excitovaných bosonů při nízkých teplotách.

Zadal autor seriálu Matouš Ringel.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz