Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (60)biofyzika (15)chemie (16)elektrické pole (54)elektrický proud (56)gravitační pole (56)hydromechanika (103)jaderná fyzika (31)kmitání (35)kvantová fyzika (21)magnetické pole (27)matematika (73)mechanika hmotného bodu (192)mechanika plynů (75)mechanika tuhého tělesa (165)molekulová fyzika (45)geometrická optika (62)vlnová optika (42)ostatní (125)relativistická fyzika (31)statistická fyzika (21)termodynamika (106)vlnění (38)

(6 bodů)3. Série 31. Ročníku - 3. IDKFA

Vypálili jste na impa z plazmové pušky, která střílí stabilní shluk částic s rovnoměrným rozdělením podélné rychlostí v intervalu $\langle v_0, \; v_0+\delta v\rangle$ (příčná rychlost je nulová) a s celkovou energií $E_0$. Hlaveň pušky má průřez $S$ a pulz trvá nekonečně krátký čas. Jak daleko musí imp stát, aby se mu nic nestalo? Předpokládejte, že jeho kůže bez problémů uchladí na malém prostoru tepelný tok $q$.

Příklad byl mírně pozměněn, neboť jsme neodhadli jeho náročnost.

Na DOOMa si vzpomněl.

(3 body)0. Série 31. Ročníku - 2. Carnotův počítač

Spočítejte účinnost procesoru, kterou definujeme pomocí snížení entropie dat a tepelného výkonu. Veškeré potřebné údaje si dohledejte.

(10 bodů)6. Série 30. Ročníku - S. nelineární

 

  • Zkuste vlastními slovy popsat, k čemu a jak se používá nelineární regrese (postačí vlastními slovy popsat následující: model nelineární regrese, způsob odhadu regresních koeficientů, vyjádření nejistot odhadů regresních koeficientů a hodnot prokládané funkce, statistické testy hodnot regresních koeficientů, identifikovatelnost parametrů a způsob volby prokládané funkce). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru regrese1.csv naleznete dvojice hodnot $(x_{i},y_{i})$. Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě sinusoida, tedy funkce tvaru

$$f(x)=a + b \cdot \sin{(cx + d)}\, .$$ Vykreslete graf naměřených hodnot a proložené funkce a stručně ho okomentujte (takovýto graf musí mít všechny náležitosti). Není potřeba dělat regresní diagnostiku.
Nápověda: Dejte si pozor na identifikovatelnost parametrů v tomto modelu a vhodné omezující podmínky na parametr $c$.

  • V přiloženém datovém souboru regrese2.csv naleznete dvojice hodnot $(x_{i},y_{i})$. Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě exponenciála, tedy funkce tvaru

$$f(x)=a + \mathrm{e}^{bx + c}\, .$$ Určete hodnoty odhadů všech regresních koeficientů včetně nejistot měření.
Nápověda: Grafickou metodou ověřte předpoklad homoskedasticity a v případě potřeby pro určení nejistot měření regresních koeficientů použijte Whiteův (sendvičový) odhad kovarianční matice.

  • V přiloženém datovém souboru regrese3.csv naleznete dvojice hodnot $(x_{i},y_{i})$. Těmito daty chceme proložit teoretickou funkční závislost, kterou je v tomto případě hyperbola, tedy funkce tvaru

$$f(x)=a + \frac{1}{bx + c}\, .$$ Vykreslete graf naměřených dat v podobě průměrů a chybových úseček a proložené funkce a stručně ho okomentujte (takovýto graf musí mít všechny náležitosti). Proveďte regresní diagnostiku.

Bonus: V přiloženém datovém souboru regrese4.csv naleznete dvojice hodnot $(x_{i},y_{i})$. Těmito daty chceme proložit teoretickou závislost, která je ovšem příliš složitá na analytické vyjádření. Proložte těmito daty regresní spliny (s vhodně zvolenými uzly a vhodně zvoleným stupněm). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal chtěl udělat poslední sérii co možná nejtěžší.

(10 bodů)5. Série 30. Ročníku - S. lineární

 

  • Zkuste vlastními slovy popsat, k čemu a jak se používá lineární regrese (postačí vlastními slovy popsat následující: dva hlavní případy aplikace lineární regrese, používaný model, předpoklady modelu, postup volby prokládané funkce, způsob vyjádření nejistot měření, základní grafické metody regresní diagnostiky). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru linreg1.csv naleznete výsledky určitého fyzikálního experimentu, ve kterém jsme měřili dvojice dat $(x_{i},y_{i})$. Naměřenými daty chceme proložit teoretickou funkci, kterou je v tomto případě parabola, tedy funkce tvaru

$$f(x)=ax^2 + bx + c$$ Hlavním cílem experimentu je určit hodnotu koeficientu $a$ (tedy koeficient u $x^2$). Určete hodnotu tohoto koeficientu včetně nejistoty měření. Není potřeba provádět regresní diagnostiku.

  • V přiloženém datovém souboru linreg2.csv naleznete výsledky určitého fyzikálního experimentu, ve kterém jsme měřili dvojice dat $(x_{i},y_{i})$. Naměřenými daty chceme proložit teoretickou funkci, kterou je v tomto případě logaritmická funkce, tedy funkce tvaru

$$f(x)=a + b \cdot \log{x} \, .$$ Hlavním cílem zpracování dat je vykreslit graf naměřených dat spolu s proloženou teoretickou závislostí. Vykreslete takovýto graf (včetně intervalového odhadu pro prokládanou funkci) a stručně ho okomentujte (takovýto graf musí mít všechny náležitosti). Není potřeba provádět regresní diagnostiku.

  • Předpokládejme, že máme naměřeny dvojice dat $(x_{i},y_{i})$ a chceme jimi proložit lineární funkční závislost, tedy funkci tvaru

$$f(x)=a + bx \, .$$ Odvoďte přesnou podobu vzorce na výpočet hodnoty odhadů regresních koeficientů. Můžete použít libovolnou ze dvou metod představených v seriálu a také libovolné jiné zdroje, pokud je budete řádně citovat. Vzorec chceme opravdu odvodit (tj. uvést výpočet), nikoliv pouze napsat.

Bonus: V druhé a třetí úloze proveďte regresní diagnostiku a diskutujte, zda jsou splněny všechny potřebné předpoklady (pokud to jde, proveďte také test vhodnosti prokládané funkce a diskutujte jeho výsledky). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal někde slyšel, že lineární regrese je prý úplně jednoduchá věc.

(9 bodů)4. Série 30. Ročníku - P. statistikův denní chléb

Známe to všichni, krajíc chleba namazaný medem nebo marmeládou, zakousneme se a najednou je kapka mazadla na ruce a jsme za prasata. Spočítejte, jak závisí pravděpodobnost, že v krajíci bude díra skrz naskrz, v závislosti na jeho tloušťce. Model kynutí těsta necháme na vás. (Třeba rovnoměrně rozmístěné bubliny s exponenciálně rozděleným poloměrem je dobrý model.)

Michal se pobryndal.

(10 bodů)4. Série 30. Ročníku - S. testovací

 

  • Zkuste vlastními slovy popsat, k čemu a jak se používá testování hypotéz (postačí vlastními slovy popsat následující: hypotéza a alternativa, chyba 1. a 2. druhu, hladina testu, testová statistika, kritický obor testu, $p$-hodnota testu pro konkrétní naměřená data). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru testovani1.csv najdete naměřené hodnoty určité fyzikální veličiny. Pomocí jednovýběrového $t$-testu otestujte, zda je skutečná hodnota měřené fyzikální veličiny rovna $20$. Dále předpokládejme, že je naším cílem ukázat, že hodnota měřené fyzikální veličiny je větší než $20$. Použijte vhodnou jednostrannou modifikaci $t$-testu k tomu, abyste toto tvrzení ověřili (dejte si pozor na správné zvolení hypotézy a alternativy).
  • V přiloženém datovém souboru testovani2.csv najdete naměřené hodnoty 2 různých fyzikálních veličin. Představujme si, že se jedná o měření stejné fyzikální charakteristiky ale za různých vnějších podmínek (teplota, tlak atd.). Pomocí dvouvýběrového $z$-testu otestujte hypotézu, že hodnota této fyzikální charakteristiky je pro obě volby vnějších podmínek stejná.
  • Použijte stejná data jako v seriálové úloze z první série a pomocí Kolmogorovova-Smirnovova testu určete, který ze 4 vzorků dat pochází z normálního rozdělení a který vzorek pochází z exponenciálního rozdělení.

Bonus: Předpokládejte, že máte k dispozici měření 2 fyzikálních veličin (tedy 2 sady naměřených hodnot), kde jsou všechna měření na sobě nezávislá. Odvoďte upravený dvouvýběrový $z$-test, který by testoval hypotézu, že skutečná hodnota první měřené fyzikální veličiny je dvojnásobek skutečné hodnoty druhé měřené fyzikální veličiny. Pro udělení bodů je nutné a postačuje odvodit podobu testové statistiky a kritického oboru (Nápověda: Použijte vícerozměrnou verzi CLV, kde vhodně zvolíte funkci $f$, a dále postupujte analogicky jako u odvození klasického dvouvýběrového $z$-testu.).

Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal chtěl otestovat, jak těžké úlohy řešitelé zvládnou.

(10 bodů)3. Série 30. Ročníku - S. limitní

 

  • Zkuste vlastními slovy popsat postup konstrukce intervalových odhadů střední hodnoty v případě obecného rozdělení měřených dat (postačí vlastními slovy popsat následující: centrální limitní věta a předpoklady jejího použití, kovariance a korelace (a jejich odhady), vícerozměrná centrální limitní věta a předpoklady jejího použití, zákon šíření nejistot a kdy ho lze použít). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru mereni3-1.csv najdete výsledky měření určité fyzikální veličiny $v$. Předpokládejme, že si nemůžeme být jisti, zda mají měřená data normální rozdělení. Vyjádřete nejistotu měření této fyzikální veličiny (nejistotu typu B neuvažujte), zkonstruujte intervalový odhady na základě CLV a stručně interpretujte jeho význam. Jak by se změnily výsledky a interpretace, pokud bychom měli k dispozici jen čtvrtinu měření (řekněme první čtvrtinu dat z datového souboru)?
  • Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít využít pro dosazení do vzorce $v = \frac{1}{2} x y^2$. Předpokládejme, že díky znalosti způsobu měření jsme si jisti, že jsou všechna měření na sobě nezávislá a ze zpracování naměřených dat měření máme následující výsledky, které jsou založeny na velkém počtu měření (více než 30 měření každé fyzikální veličiny) $x = (5,\! 2 \pm 0,\! 1)$, $y = (12,\! 84 \pm 0,\! 06)$. Určete odhad fyzikální veličiny $v$ a nejistotu měření fyzikální veličiny $v$.

Nápověda: Mohly by se vám hodit následující vztahy: $$\frac{\partial}{\partial x} \( \frac {1}{2} x y^2 \) = \frac {1}{2} y^2\, ,$$ $$\frac{\partial}{\partial y} \( \frac {1}{2} x y^2 \) = x y \, .$$ * Pomocí simulace ve výpočetním prostředí //R// demonstrujte platnost centrální limitní věty. Tj. generujte $n$-tice nezávislých realizací náhodné veličiny, která nemá normální rozdělení (pro tento případ použijte exponenciální, rovnoměrné a Poissonovo rozdělení s libovolně zvolenými parametry) a na histogramu ukažte, že pokud na data provedeme následující transformaci $\sqrt{n}\frac{\overline{x_n - \mu}}{S_n}\, ,$ takto transformovaná data už budou rozdělena přibližně podle normálního rozdělení $N(0,1)$. (Součástí hodnocení bude i hodnocení vzhledu grafů – zejména vhodně zvolené popisky os a legenda.)

Bonus: Předpokládejme, že naším cílem je naměřit fyzikální veličiny $x$ a $y$, které budeme chtít dosadit do vzorce $$v = x^2 \sin{y}\, .$$ Uvažujme nejobecnější model měření (tj. měřená data nemají normální rozdělení a měření různých fyzikálních veličin na sobě mohou být závislá). V datovém souboru mereni3-2.csv máme výsledky měření fyzikálních veličin $x$ a $y$, určete nejistotu určení veličiny $v$ a zkonstruujte pro ni intervalový odhad.

Michal se pokusil vymyslet limitně těžké zadání seriálové úlohy.

(10 bodů)2. Série 30. Ročníku - S. odhadnutelná

 

  • Zkuste vlastními slovy popsat, k čemu slouží intervalový odhad střední hodnoty v normálním rozdělení a uveďte jeho fyzikální interpretaci (postačí vlastními slovy popsat následující: fyzikální interpretace odhadu střední hodnoty, rozdíl mezi (bodovým) odhadem a intervalovým odhadem, nejdůležitější vlastnost intervalového odhadu, metoda zkráceného zápisu intervalového odhadu, nejistota měření). Není potřeba uvádět přesná matematická odvození, stačí požadované pojmy a vlastnosti stručně popsat.
  • V přiloženém datovém souboru mereni1.csv najdete naměřené hodnoty určité fyzikální veličiny (uvažujte nejistotu typu B $s_\mathrm{B} = 0,\! 1$ ). Zkonstruujte z těchto dat bodový i intervalový odhad měřené fyzikální veličiny a krátce interpretujte jejich význam.
  • Předpokládejme, že měříme určitou fyzikální veličinu a víme, že vlivem použité metody měření budou mít naměřená data rozptyl rovný konstantě $c$ (nejistotu typu B neuvažujte). Kolik musíme přibližně provést měření, abychom dosáhli nejistoty měření menší než $s$?
  • V přiloženém datovém souboru mereni2.csv najdete data měření stejné fyzikální veličiny dvěma různými způsoby (nejistotu typu B neuvažujte). U které metody byla použitá měřící aparatura přesnější? Který způsob měření dal přesnější výsledek měření? U obou otázek své závěry i stručně zdůvodněte.

Bonus: Zkuste odvodit, že v normálním rozdělení je výběrový rozptyl nestranným odhadem skutečného rozptylu (tj. střední hodnota výběrového rozptylu je rovna skutečnému rozptylu). Pro řešení tohoto úkolu můžete použít libovolné zdroje (pokud je budete řádně citovat). Pro práci s daty použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal si dal v zadání pozor na hrubé chyby.

(10 bodů)1. Série 30. Ročníku - S. náhodná

 

  • Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná veličina, rozdělení náhodné veličiny, realizace náhodné veličiny, střední hodnota, rozptyl, histogram).
  • Vygenerujte grafy hustot pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot) všech v seriálu popsaných rozdělení náhodných veličin pro různé typy parametrů daného rozdělení a popište, jaký má změna parametru/ů vliv na tvar hustoty pravděpodobnosti (případně pravděpodobností nabývání jednotlivých hodnot).
  • Vygenerujte z přiložených dat histogramy a pokuste se určit, ze kterého rozdělení tato data pocházejí.
  • Definujme si náhodnou veličinu $X$ jako výsledek hodu „férovou“ šestistěnnou kostkou (všechna čísla padají se stejnou pravděpodobností). Určete rozdělení náhodné veličiny $X$ a dále spočítejte $\mathrm{E}X$ a $\mathrm{var}X$.

Bonus: Uveďte příklad dvou náhodných veličin, které mají stejnou střední hodnotu i stejný rozptyl, ale mají různá rozdělení. Pro práci s daty a vykreslování grafů použijte výpočetní prostředí R. Pro vyřešení těchto úkolů postačí drobně upravit přiložený skript, ve kterém je pomocí komentářů v kódu vysvětlena potřebná syntaxe jazyka R.

Michal stanovil zadání úlohy náhodně, snad nebude moc těžká.

(2 body)5. Série 29. Ročníku - 2. mnohočásticová

Mějme nádobu, která je pomyslně rozdělena na dvě shodné disjunktní oblasti $\mathrm{A}$ a $\mathrm{B}$. V nádobě je $n$ částic, z nichž se každá nachází s pravděpodobností $50\; \%$ v části $\mathrm{A}$ a s pravděpodobností $50\; \%$ v části $\mathrm{B}$. Určete, s jakou pravděpodobností bude v části $\mathrm{A}$ $n_{\mathrm{A}}=0,\! 6 n$, resp. $n_{\mathrm{A}}=1+n/2$ částic. Řešte pro $n=10$ a $n=N_{\mathrm{A}}$, kde $N_{\mathrm{A}}≈6 \cdot 10^{23}$ je Avogadrova konstanta.

Mirek má rád zákon velkých čísel.

(2 body)1. Série 26. Ročníku - 2. odhal svoje vnitřnosti!

Odhadni počet elektronů ve svém těle.

Karel si hraje s vnitřnostmi.

6. Série 19. Ročníku - S. poslední úloha

  1. Kvalitativně popište, jak se chová tepelná kapacita Isingova modelu s nulovým vnějším magnetickým polem v okolí kritické teploty.
  2. Podobným postupem, jako jsme vypočítali chování magnetizace $m$ v okolí kritického bodu, určete chování susceptibility $χ$ ($lim_{B→0}∂m⁄∂B$) a závislost magnetizace na magnetickém poli při kritické teplotě.
  3. Ukažte, že model mřížového plynu vede ke kondenzaci a určete kritickou teplotu.
  4. Prozkoumejte model binární slitiny.

Zadal autor seriálu Matouš Ringel.

5. Série 19. Ročníku - S. fermiony a bosony

  1. Najděte hustotu stavů $g(E)$ pro volné elektrony a pomocí ní určete vztah mezi počtem elektronů a Fermiho energií při nulové teplotě. Zjistěte, jak musí záviset Fermiho energie na teplotě (při nevelkých teplotách), aby byl počet elektronů konstantní. Nakonec odhadněte počet excitovaných elektronů při pokojové teplotě.
    Nápověda: Nechte se inspirovat minulými díly seriálu a úlohami k nim.
  2. Určete závislost μ na teplotě při malých teplotách a konstantním počtu částic v systému stejných bosonů. Najděte teplotní závislost počtu excitovaných bosonů při nízkých teplotách.

Zadal autor seriálu Matouš Ringel.

4. Série 19. Ročníku - S. díl čtvrtý

  1. Jakou tepelnou kapacitu plynu složeného z tříatomových molekul s atomy uspořádanými do vrcholů trojúhelníku předpovídá klasická fyzika? Na jakou hodnotu tato kapacita poklesne při snížení teploty na 100 K?
  2. Zjistěte chování výrazů pro vnitřní energii krystalu a energetické spektrum záření černého tělesa pro malé teploty. Odvoďte dále tzv. Wienův posunovací zákon. Ten říká, že frekvence $ω_{m}$, pro níž má závislost intenzity záření černého tělesa na teplotě maximum, je přímo úměrná teplotě.
  3. Vypracujte lepší teorii tepelné kapacity krystalu, aby uvažovala kolektivní kmity atomů. Případné integrály nemusíte počítat.

Nápověda: Uvědomte si, že se krystalem šíří zvukové vlny (jak příčné, tak podélné, a to různými rychlostmi). Počet módů nemůže být větší, než je počet stupňů volnosti $3N$ krystalu ($N$ je počet částic).

Zadal autor seriálu Matouš Ringel

3. Série 19. Ročníku - S. aplikace statistické fyziky

  1. Pomocí podobné úvahy jako v příkladu v textu určete, jaký tvar má Gultbergův-Waageův zákon pro složitější reakce (např. $2A+B -> A_{2}B$). Zkuste zjistit, jestli (a jak dobře) tento zákon odpovídá skutečnosti.
  2. Maxwellova-Boltzmannova rozdělení odvoďte, jaké mocnině teploty je úměrná střední kinetická energie částic plynu. Ověřte si, že jste schopni stejnou metodou zjistit, jak závisí na teplotě střední hodnota libovolné mocniny rychlosti.
  3. Mějme systém nezávislých spinů, diskutovaný v textu, o teplotě $T_{1}$, který se nachází v magnetickém poli o velikosti $B_{1}$. Následně systém adiabaticky zaizolujeme (tj. zavřeme jej do termosky, aby z něj nemohlo odcházet žádné teplo) a budeme pomalu zmenšovat magnetické pole až na hodnotu $B_{2}$. Kvalitativně vysvětlete, proč se bude snižovat teplota systému. Pokud možno vypočítejte, jaká bude výsledná teplota $T_{2}$.

Nápověda: Práce vykonaná na systému s magnetickým momentem $M$ při malé změně magnetického pole $B$ o $\rm{d}B$ je dána vztahem $\rm{d}W=-MdB$.

Autor seriálu, Matouš Ringel.

2. Série 19. Ročníku - S. aparát statistické fyziky

  1. Jaký je vztah mezi počtem mikrostavů $Ω(E)$ termostatu s energií $≤ E$ a veličinou $η(E)$ (tj. počtem mikrostavů s energií v intervalu $E±Δ$) pro malá $Δ$?
  2. Mějme systém $N$ nezávislých harmonických oscilátorů, přičemž energie každého oscilátoru může nabývat hodnot $nhω$ s $n=0,1,2,\ldots$ (zanedbáváme energii nulových kmitů). Jaký bude mít tvar veličina $η(E)$ a $β(E)$ pro velká $N$ a $E$?
  3. Najděte stejné veličiny jako v předchozím příkladu pro systém $N$ neinteragujících volných elektronů uvězněných a) na úsečce, b) ve čtverci, c) v krychli.

Nápověda: Použijte de Broglieho relace mezi hybností a vlnovou délkou de Broglieho vlny. Na úsečku se musí vejít celý počet půlvln. De Broglieho vlny ve čtverci si lze představit coby součin vln ve směru osy $x$ a osy $y$, kvantovací podmínka je podobná jako pro úsečku.

Autorem je Matouš.

2. Série 15. Ročníku - 2. tyč

Představte si metrovou ideálně homogenní tyč, kterou na krajích ve vodorovné poloze podepřete prsty. Prsty pomalu začněte přibližovat k sobě (směrem ke středu tyče), udržujete je pořád ve stejné výšce. Statický koeficient tření mezi prsty a tyčí je $f_{s}$, dynamický $f_{d}$, přičemž $f_{s}>f_{d}$. Následný děj podrobně popište.

Na přednášce fyzika pro matematiky pro první ročník MFF viděla Lenka Zdeborová.

4. Série 9. Ročníku - S. srážející se molekuly

Při odvození rovnice plynu jsme neuvažovali nárazy molekul na sebe navzájem. Pokuste se říci, ve kterém bodě našich úvah je třeba tento problém diskutovat a diskutujte ho.

Nápověda: Při diskusi použijte pojem střední volné dráhy molekuly.

3. Série 9. Ročníku - S. střední volná dráha

Vypočtěte střední volnou dráhu molekuly dusíku při normálním tlaku a pokojové teplotě $t=20\;^\circ\mathrm{C}$. Poloměr molekuly dusíku $r=1{,}5\cdot 10^{-10}\;\textrm{m}$.

4. Série 1. Ročníku - 1. mouchy

Koule o poloměru $R$ pohybující se velkou rychlostí $v$ prolétne rojem much, který se pohybuje rychlostí $u$ kolmou na směr pohybu koule. Šířka roje je $d$, v jednotce objemu se nachází průměrně $n$ much. Kolik much přijde při této smutné události o život?

1. Série 1. Ročníku - S. kapitán Brown

Představme si, že v přístavu vyšel z hospody H kapitán Brown. Kapitán je zcela opitý, a tak kráčí náhodně (krok vpřed i vzad jsou stejně pravděpodobné). Předpokládejme, že kráčí podél mola v přímkové dráze. Snaží se dojít ke své lodi, která kotví $k$ kroků od výchozího bodu H.

Nalezněte pravděpodobnost, že po $n$ krocích kapitán dojde ke své lodi. Úlohu se pokuste řešit analyticky, tj. přímo nalezněte hledanou pravděpodobnost $p=p(n,k)$. Úlohu se také pokuste modelovat. Pomocí vhodného generátoru náhodných čísel. (Zkuste třeba házet mincí, eventuelně použít mikropočítač atp.) nechte mnohokrát vyjít námořníka z počátečního bodu a sledujte v kolika pokusech dojde ke své lodi. (Zkuste číselně pro $n=20$, $k=8$).

Rozřešení předchozí úlohy použijte k zodpovězení této otázky: kapitán udělá $n$ kroků; jaká je střední hodnota druhé mocniny jeho vzdálenosti od bodu H?

Návod: Požadované střední hodnoty jsou definovány takto. $$\langle r\rangle=\sum_{k}p(n,k)\cdot k \langle r^2\rangle=\sum_{k}p(n,k)\cdot k^2$$ Potřebné pravděpodobnosti $p(n,k)$ můžete odhadnout z vašich modelových pokusů, i když je neznáte analyticky.

Dovedli byste zdůvodnit analogii mezi kráčením kapitána Browna s pohybem pylových zrnek v kapalině? Je z hlediska vámi spočtených středních hodnot $\langle r\rangle$, $\langle r^2\rangle$ podstatné, že kapitán Brown kráčí v přímce, kdežto pylová zrnka se pohybují v rovině?

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner

Partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz