Vyhledávání úloh podle oboru

Databáze všech úloh FYKOSu za posledních 32 let jeho existence.

astrofyzika (72)biofyzika (18)chemie (19)elektrické pole (63)elektrický proud (66)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (46)kvantová fyzika (25)magnetické pole (33)matematika (80)mechanika hmotného bodu (244)mechanika plynů (79)mechanika tuhého tělesa (195)molekulová fyzika (60)geometrická optika (69)vlnová optika (51)ostatní (142)relativistická fyzika (35)statistická fyzika (19)termodynamika (129)vlnění (45)

relativistická fyzika

3. Série 19. Ročníku - 2. nájezd na čočku

Mějme spojku o ohniskové vzdálenosti $f$. Zdroj světla je na ose ve vzdálenosti $a>f$ od čočky, za kterou vzniká jeho obraz. Zdrojem začneme pohybovat určitou rychlostí směrem k čočce. Určete, jak rychle se pohybuje obraz. Rozhodněte, zda tato rychlost může být i nadsvětelná. Bylo by to v rozporu s principy speciální teorie relativity?

Vymyslel Jarda Trnka, když psal studijní text z optiky.

6. Série 18. Ročníku - 2. jak vyrobit černou díru

Pokud stlačíme hvězdu (či jakékoliv jiné těleso) na kouli o poloměru $r_{g}$, zhroutí se nenávratně do černé díry. Tzv. Schwarzschildův poloměr $r_{g}$ si lze v klasické analogii představit jako poloměr tělesa o hmotnosti $M$, z jehož povrchu lze uniknout pouze rychlostí světla (úniková rychlost je $c$).

Na základě znalosti hmotnosti hvězdy $M$ určete Schwarzschildův poloměr $r_{g}$ a kritickou hustotu hvězdy $ρ$, při které se přemění v černou díru. Příklad řešte obecně a poté konkrétně pro Zemi, Slunce a jádro galaxie o hmotnosti 100 miliard Sluncí.

Jarda

6. Série 18. Ročníku - E. chyťte foton

Změřte rychlost světla ve vakuu. Provést to můžete libovolným způsobem, použijte třeba i mikrovlnnou troubu.

Co jiného dát jako experiment do roku fyziky.

6. Série 18. Ročníku - P. výlet na Stonehenge

figure

Představte si, že v raketě prolétáváte nad Stonehenge. Ten je tvořen kameny ve tvaru kvádrů rozmístěných do vrcholů pravidelného dvanáctiúhelníku (viz obrázek 2) o poloměru $200$. Letíte nad osou $x$ ve výšce $z=50$ a díváte se vodorovným směrem. Když jste v bodě o souřadnicích ($-200$, $0$), resp. ($0$, $0$), uvidíte svět přesně tak, jak je zobrazen na obrázku 6, přičemž oba máte shodné oči (tzn. např. stejný zorný úhel). Z obrázků přibližně určete poměr rychlosti rakety a rychlosti světla.

Matouš.

4. Série 18. Ročníku - 3. limuzína v garáži

Jeden z vítězů Superstar narazil na problém. Jeho nová limuzína je příliš dlouhá na to, aby se vešla do jeho staré garáže. Jeho kamarád, který studuje fyziku, si však věděl rady. Jelikož dobře zná práci Alberta Einsteina, uvědomil si, že pokud se limuzína rozjede dostatečně rychle, zkrátí se její délka z pohledu stojícího pozorovatele natolik, že se již do garáže vejde.

Na začátku a na konci garáže jsou umístěny padací dveře, které se spustí ve chvíli, kdy celá limuzína bude uvnitř. Z pohledu superstar v limuzíně se však naopak v důsledku kontrakce délek zkrátí garáž a vůz se do ní určitě nevejde. Rozhodněte, zda je možné tímto způsobem limuzínu do této garáže zaparkovat.

Podle úlohy z přednášky z STR.

1. Série 17. Ročníku - S. elektromagnetické pole

 

  • V prostoru je homogenní magnetické a elektrické pole (homogenní pole má svou veličinu všude stejnou co do velikosti i směru). Je dána velikost

$E$ i $B$ a tyto vektory jsou na sebe kolmé. Jak se musí pohybovat elektron, aby na něj nepůsobila žádná síla? Jak je to v případě, že $E$ a $B$ svírají úhel $60^{\circ}$?

  • Jak bylo řečeno v seriálu, nezmění se při přemístění jednoho z nábojů síla působící na druhý náboj hned. Pokuste se na základě tohoto faktu vysvětlit, proč má elektromagnetické pole hybnost.

Úlohy vymyslel autor seriálu Honza Houštěk.

5. Série 13. Ročníku - 4. letící tyč

Mějme v rovině dvě na sebe kolmé přímky $a$ a $b$. V přímce $a$ letí tyč délky $l=5\cdot 10^{7}\,\jd{m}$ rychlostí $v=6\cdot 10^{6}\;\mathrm{m}\cdot \mathrm{s}^{-1}$ (tyč je s přímkou rovnoběžná a její střed na ní neustále leží). Vaším úkolem je určit, jaký bude průběh „viděné“ (viz dále) délky tyče v závislosti na její vzdálenosti od průsečíku přímek. Tyč pozorujeme z přímky $b$ v takové vzdálenosti od průsečíku, která je zanedbatelná vůči vzdálenosti tyče od průsečíku.

„Viděná“ délka tyče: k přímce $a$ přiložíme pravítko a letící tyč vyfotografujeme. „Viděnou“ délkou tyče pak rozumíme rozdíl hodnot krajních bodů tyče odečtených z pravítka z fotografie.

2. Série 11. Ročníku - S. relace neurčitosti

 

  • Před objevem neutronu existovala hypotéza, že jádro s atomovým číslem $Z$ a hmotnostním $A$ se skládá z $A$ protonů a $A-Z$ elektronů. Odhadněte řádově, jakou kinetickou energii by měl elektron, jehož neurčitost polohy by byla srovnatelná s velikostí jádra helia. Jaké důsledky má tento odhad pro zmíněnou hypotézu? Pokud se částice pohybuje rychlostí srovnatelnou s rychlostí světla, nelze již použít klasický vztah pro kinetickou energii $E_{k}=p^{2}⁄2\;\mathrm{m}$, a místo něj je třeba vzít relativistický vzorec:

$$E_{k}=\sqrt{(p^{2}c^{2}+m_{0}^{2}c^{4}} - m_{0}c^{2}\,,$$

kde $m_{0}$ je klidová hmotnost částice.

  • Uvažujme výše popsaný dvojštěrbinový experiment s elektrony. Vzdálenost štěrbin je $b=0,3\;\mathrm{mm}$ a vzdálenost stínítka od přepážky $l=1\;\mathrm{m}$. Zjistěte, jakou rychlost musí mít elektrony, aby vzdálenost dvou sousedních interferenčních minim na stínítku, které může být sestaveno například z fotočlánků, byla $d=0,2\;\mathrm{mm}$.
  • Představte si, že místo dvou štěrbin uděláme do přepážky pouze jednu. Po průchodu touto štěrbinou se fotony odchylují od původního směru, takže na stínítku uvidíme místo ostrého obrazu štěrbiny rozmazanou světlou skvrnu. Vysvětlete tento jev na základě relací neurčitosti.

Literatura: Arthur Beiser, Úvod do moderní fyziky, Academia, Praha 1978

2. Série 10. Ročníku - P. dvojčata ve vesmíru

figure

Michal a Karel jsou dvojčata. V zájmu vyššího vědeckého poznání je posadíme každého do jiné kosmické lodi v týž čas $t = 0$ a vystřelíme ze Země $Z$ rychlostmi $\textbf{u}$ a $\textbf{v}$ vstříc hvězdným dálavám. Abychom jim život co nejvíce znepříjemnili, jejich rychlosti svírají úhel $φ$, jak je to vidět na obr. 5. Po čas hvězdného putovaní se jejich rychlosti nemění. V čase $t_{0}$ se Michal, který se zrovna nachází v bodě $M$, rozhodne vyslat zprávu – radiový signál svému sourozenci. Pod jakým úhlem $γ$ vůči svému směru pohybu musí zaměřit signál, aby Karel zprávu obdržel?

Vliv ostatních těles na dráhu lodi a paprsku zanedbejte. Diskutujte též případ, kdy vesmírné lodě nejsou vypuštěny ve stejný čas, ale Michal se vydá do vesmíru o dobu $T$ dříve. Jak se změní výpočet budou-li velikosti rychlosti $\textbf{u}$ a $\textbf{v}$ blízké rychlosti světla $c$?

5. Série 7. Ročníku - S. prostoročas

 

  • Nechť v bodě P dojde k jaderné explozi, při které vznikne mimo jiné množství nestabilních částic, jejichž maximální doba života je 10^{−6} s. Zakreslete do prostoročasového diagramu (jednou osou bude čas a druhou vzdálenost od bodu P) oblast světobodů, kde může dojít k registraci této částice. Jaká křivka ohraničuje tuto oblast?
  • Tato úloha je zase více matematická. Ukázalo se, že délky pohybujících se tyčí jsou v diagramech zakresleny v jiném měřítku, než jaké odpovídá osám klidové soustavy (a v jakém jsme zvyklí měřit). Geometrie je zde tedy poněkud jiná než v běžné Eukleidovské rovině. Budeme v prostoročasové rovině považovat za pravý úhel mezi dvěma úsečkami rovnoběžnými s osami téže vztažné soustavy. Zkuste najít vztah pro převod úhlů mezi osami dvou různých vztažných soustav, tak jak je měříme běžným způsobem v klidové soustavě (kde určují rychlosti) a jak by to plynulo z goniometrických fcí pro poměr stran pravoúhlého trojúhleníka (podle uvedené definice pravého úhlu).
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz