Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (23)elektrické pole (71)elektrický proud (75)gravitační pole (81)hydromechanika (146)jaderná fyzika (44)kmitání (57)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (298)mechanika plynů (87)mechanika tuhého tělesa (221)molekulová fyzika (71)geometrická optika (78)vlnová optika (65)ostatní (167)relativistická fyzika (37)statistická fyzika (21)termodynamika (154)vlnění (51)

ostatní

(3 body)5. Série 32. Ročníku - 2. hloubka vniku do koule

Představte si, že máte podchlazenou plnou kovovou homogenní kouli, kterou vytáhnete z mrazáku, který máte nastavený na opravdu nízkou teplotu. Zajímalo by vás, jak rychle se bude zvyšovat její teplota, když ji umístíte do zahřáté místnosti. Protože by to jinak byl vysokoškolský problém, tak jsme pro vás úlohu zjednodušili. Ptáme se na odhad hloubky vniku (v metrech) „teplé oblasti“ do koule, který můžete získat rozměrovou analýzou. Přičemž známe relevantní parametry koule, konkrétně hustotu $\left [ \rho \right ] = \jd {kg.m^{-3}}$, měrnou tepelnou kapacitu $\left [c\right ] = \jd {J.kg^{-1}.K^{-1}}$ a její součinitel tepelné vodivosti $\left [ \lambda \right ] = \jd {W.m^{-1}.K^{-1}}$ a zajímá nás závislost na čase $\left [t\right ] = \jd {s}$.

Karel se inspiroval problémem z Eötvös Competition.

(10 bodů)4. Série 32. Ročníku - S. lagrangeovská

V závere seriálu ste si určite všimli Lagrangián a diferenciálnu rovnicu, ktoré akoby „spadli z neba“. To nie je vôbec náhoda, veľkou časťou tejto seriálovej úlohy bude tieto dve rovnice odvodiť.

  1. Ukážte, že ak máme pohyb častice v ľubovoľnom centrálnom poli, teda v poli, kde potenciál závisí len na vzdialenosti, bude sa častica zaručene pohybovať len v rovine.
    Návod: Zostavte Lagrangeove rovnice II. druhu pre túto situáciu, použite pri tom vhodné zovšeobecnené súranice. Následne bez ujmy na všeobecnosti položte súradnicu $\theta = \pi /2$ a počiatočnú rýchlosť v smere tejto súradnice nulovú. Zamyslite sa a vysvetlite, prečo je takáto voľba v poriadku a nestratíme pri nej žiadne riešenie.
  2. Zostavte Lagrangián pre hmotný bod pohybujúci sa v rovine v centrálnom poli. Mali by ste dostať ten istý, ako je uvedený v závere seriálu. Pre tento Lagrangián následne nájdite všetky intergály pohybu a pomocou nich nájdite diferenciálnu rovnicu prvého rádu pre premennú $r$. Pre vašu kontrolu, mala by vám vyjsť rovnako ako na konci seriálu.
  3. Zamyslite sa, ako určiť uhlovú vzdialenosť medzi dvoma bodmi na sfére, ak máte zadané ich sférické súradnice. Ukážte to napríklad pre hviezdy Betelgeuze a Sírius, ktorých súradnice si nájdite.
    Pomôcka: Táto úloha sa dá jednoducho vyriešiť aj bez znalosti sférickej trigonometrie.

(10 bodů)6. Série 31. Ročníku - S. Matice a populace

  1. Na základě Lotkova-Volterrova modelu simulujte vývoj populace predátora a kořisti (např. slunéčka sedmitečného a mšice makové) pro následující hodnoty parametrů: $r\_m = 0{,}8$, $D\_m = 1{,}0$, $r\_s = 0{,}75$, $D\_s = 1{,}5$. Počáteční populace volte po dvojicích jako $m = 0{,}5$ a $s = 2{,}0$; $m = 1{,}5$ a $s = 0{,}5$; $m = 1{,}95$ a $s = 0{,}75$. Výsledek zaneste do grafu závislosti populace predátora na populaci kořisti. Výsledky diskutujte.
    Bonus: Nalezněte tvar křivek v grafu pomocí analytických metod (integrací diferenciální rovnice).
  2. Použitím kompetitivního Lotkova-Volterrova modelu simulujte vývoj dvou soupeřících populací s omezenou populační kapacitou (např. káně lesní a poštolka obecná) pro tyto hodnoty parametrů: $r\_k = 0{,}8$, $I\_{kp} = 0{,}2$, $k\_k = 2{,}0$, $r\_p = 0{,}6$, $I\_{pk} = 0{,}3$, $k\_p = 1{,}0$. Počáteční populace volte jako $k = 0{,}01$, $p = 1{,}0$. Poté změňte interakční koeficienty na $I\_{kp} = 1{,}5$ a $I\_{pk} = 0{,}6$, zbytek ponechejte. Výsledky zaneste do jednoho grafu závislosti velikosti populací na čase, diskutujte.
  3. Ověřte důležitost pivotizace. Vyřešte soustavu \[\begin{equation*} \begin{pmatrix} 10^{-20} & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} \end {equation*}\] nejprve přesně (na papíře), poté s využitím LU dekompozice s (částečnou) pivotizací (využijte nějakou knihovní funkci, např. scipy.linalg.lu()), a nakonec pomocí LU dekompozice bez pivotizace (to si budete muset sami naprogramovat). Porovnejte výsledky $\vect {x}$ z jednotlivých metod a výsledky zpětného vynásobení matic $L^{-1}\cdot U$ (resp. $P\cdot L^{-1}\cdot U$ v případě s pivotizací).
  4. Mějme nekonečný deskový kondenzátor se vzdáleností desek $L=10 \mathrm{cm}$ a napětím mezi deskami $U=5 \mathrm{V}$. Do kondenzátoru vložíme uzemněnou elektrodu ve tvaru nekonečně dlouhého hranolu s čtvercovou podstavou o hraně $a=2 \mathrm{cm}$, jejíž střed leží $l=6{,}5 \mathrm{cm}$ od uzemněné desky původního kondenzátoru (tak, že leží mezi deskami). Hranol je orientován tak, že jedna z jeho kratších hran je kolmá k deskám kondenzátoru. Nalezněte průběh elektrického potenciálu v kondenzátoru. Protože je problém symetrický vůči posunu v ose rovnoběžné s nekonečnou hranou hranolu, stačí jej řešit v řezu kolmém k této ose, jde tedy o 2D problém. V této rovině pak získaný průběh potenciálu také vykreslete. K řešení můžete využít program přiložený k zadání.
    Bonus: Vypočtěte a vykreslete také průběh velikosti intenzity el. pole $\vect {E}$.

Mirek a Lukáš naplňují matice attoliškami.

(9 bodů)5. Série 31. Ročníku - P. plovoucí rtuť

Vymyslete co nejvíce fyzikálních „fíglů“, díky kterým by rtuť, alespoň po omezenou dobu, plavala na kapalné vodě. Čím trvalejší řešení naleznete, tím lépe.

Karel chtěl otočit Archiméda na ruby.

(10 bodů)5. Série 31. Ročníku - S. rostou nám diferenciální rovnice

  1. Řešte problém dvou těles pomocí Verletovy a Rungovy-Kuttovy metody 4. řádu přes několik (mnoho) period. Krok přitom volte tak velký, aby se projevily numerické chyby, a pozorujte, jakým způsobem se chyby v obou případech projevují na tvaru trajektorie.
  2. Řešte pohyb tlumeného lineárního harmonického oscilátoru daného rovnicí $\ddot {x}+2\delta \omega \dot {x}+\omega ^2 x=0$, kde $\omega $ je úhlová frekvence a $\delta $ tlumící člen. Parametry měňte a sledujte změny v chování oscilátoru. Pro jaké hodnoty parametrů se oscilátor utlumí nejrychleji?
  3. Modelujte růst povrchu metodou balistické depozice a studujte statistické chování hrubosti povrchu. Nalezněte mocniny $\alpha $ a $\beta $ popisující růst před saturací a po saturaci (viz seriál). Vyjděte z kódu v seriálu. Volte takový počet kroků, abyste byli schopni dobře studovat oba režimy hrubnutí. Lineární rozměr povrchu volte alespoň $L = 256$. (Upozornění: simulace mohou trvat i několik hodin.)
  4. Simulujte na čtvercové mřížce šíření zhoubného nádoru pomocí Edenova modelu. Uvažujte přitom následující obměnu: s pravděpodobností $p_1$ dojde k nákaze zdravé buňky v kontaktu s nádorovou a s pravděpodobností $p_2$ dojde k uzdravení nakažené. Volte nejprve $p_1 \gg p_2$, pak $p_1 > p_2$ a nakonec $p_1 < p_2$. Na počátku nechť je nakaženo pět buněk do tvaru kříže. Kvalitativně popište, co pozorujete.
  5. Přepište kód ze seriálu pro růst fraktálního krystalu (DLA model) na hexagonální mřížce na růst na čtvercové mřížce a spočtěte dimenzi výsledného fraktálu.

Poznámka: Využít kódy přiložené k seriálu není nutné, ale doporučené.

Algebru už Mirek s Lukášem vypěstovali, nyní mají jiné osivo.

(10 bodů)4. Série 31. Ročníku - S. Kořeni a automati

  1. Nalezněte všechny (tři) reálné kořeny funkce $\exp (x)-5x^2$. Výběr metody je na vás. Nezapomeňte okomentovat, jak a proč jste zvolili daný postup.
  2. Newtonova metoda tak, jak jsme si ji představili funguje i pro funkce komplexní proměnné. Vaším úkolem je vykreslit tzv. Newtonovy fraktály, tedy oblasti v komplexní rovině takové, že když v nich zvolíme počáteční odhad kořenu pro Newtonovu metodu, tak dokonvergujeme k určitému kořenu. Fraktál vykreslete pro funkce $z^3-1$ a $z^6+z^3-1$, kde $z$ je komplexní číslo. Derivace těchto funkcí jsou $3z^2$, resp. $6z^5+3z^2$. Pro výpočet a vykreslení můžete použít Pythonní kód přiložený k zadání.
    Poznámka: Komplexní derivaci, pokud existuje, lze technicky spočítat stejně, jako reálnou derivaci, tedy pro ni platí stejné vzorce pro derivaci součtu, součinu a složené funkce.
    Bonus: Nalezněte co nejzajímavější nebo nejhezčí Newtonův fraktál.
  3. Simulujte na počítači (nebo napočítejte ručně) elementární buněčný automat s pravidlem 54 na mřížce délky 20 s periodickými podmínkami alespoň na 10 časových kroků (víc určitě neuškodí). Na počátku má jedna buňka hodnotu 1 a zbylé 0, uvažujte periodické podmínky. Výsledek zobrazte v časoprostorovém diagramu.
  4. Simulujte hrubnutí 1D povrchu pomocí modelu náhodné depozice popsaném v seriálu. Povrch má rozměr $L = 100$, na počátku je zcela hladký. Nakreslete graf závislosti hrubosti $W$ na čase pro alespoň $10^8$ kroků (jeden krok $=$ jedna nová částice), výsledek diskutujte.

Lukáš a Mirek se inspirují na přednáškách.

(8 bodů)3. Série 31. Ročníku - P. složený papír

Každý to jistě někdy slyšel a určitě i zkusil: „List papíru nelze na půlku přeložit více než sedmkrát.“ Je to ale skutečně pravda? Najděte hraniční podmínky.

Kuba se nudil a skládal papír.

(10 bodů)3. Série 31. Ročníku - S. na procházce s integrály

  1. Vymyslete tři odlišné příklady markovovského procesu, z toho alespoň jeden fyzikální. Je procházka bez návratu markovovská? A co procházka bez křížení?
  2. Mějme 2D náhodnou procházku bez návratu na čtvercové síti s počátkem v bodě $(x,y) = (0,0)$, která je omezena absorpčními bariérami $b_1: y = -5$, $b_2: y = 10$. Nalezněte pravděpodobnost, že v bariéře $b_1$ skončíme dříve než v $b_2$.
  3. Proveďte simulaci pohybu brownovské částice ve 2D a vykreslete graf závislosti střední vzdálenosti od počátku na čase. Uvažujeme diskrétní čas a konstantní délku kroku (jeden krok simulace trvá $\Delta t = \textrm{konst.} $, délka kroku je $\Delta l = \textrm{konst.} $) a umožňujeme pohyb do libovolného směru, tj. každý krok je specifikován délkou a úhlem $\theta \in [0,2\pi )$, přičemž všechny směry jsou stejně pravděpodobné. Zajímá nás především asymptotické chování, tedy vývoj střední vzdálenosti pro $t \gg \Delta t$.
  4. Chybová funkce je definována vztahem \[ \mathrm{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x \eu^{-t^2}\,\d t\,.\] Tabelujte tuto funkci, tedy vypočtěte integrál pro mnoho různých $x$. Do řešení nevkládejte tabulku hodnot, ale graf funkce. Zkuste tuto funkci opět numericky zderivovat. Co dostanete?
  5. Najděte si definici hustoty pravděpodobnosti Maxwellova-Boltzmannova rozdělení $f(v)$, tedy rozdělení rychlostí molekul ideálního plynu. Spočítejte pak pomocí MC integrace střední hodnotu rychlosti definovanou \[ \langle v\rangle = \int_0^{\infty} v f(v)\,\d v\,, \] přičemž pro vzorkování použijte náhodná čísla dle Maxwellova-Boltzmannova rozdělení získaná Metropolisovým-Hastingsovým algoritmem. Hodnotu pro konkrétní zvolené parametry srovnejte s hodnotou z literatury.

Mirek a Lukáš se náhodně procházejí do školy.

(3 body)2. Série 31. Ročníku - 1. Zuběnka

Jak velké skladovací prostory by musela mít Víla Zubnička, aby mohla skladovat všechny mléčné zuby všech dětí? Resp. jakým tempem by její nároky na uskladnění rostly? Za jakou dobu by teoreticky měla ve svých skladech většinu zásob fosforu na Zemi?

Karel se myšlenkách vrací na Zeměplochu.

(12 bodů)2. Série 31. Ročníku - E. sypká

Změřte sypný úhel alespoň 2 látek běžně používaných v kuchyni (např. mouka, cukr, sůl apod.).

Michal se málem sesypal.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Hlavní partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz