Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (85)biofyzika (18)chemie (23)elektrické pole (70)elektrický proud (75)gravitační pole (80)hydromechanika (146)jaderná fyzika (44)kmitání (56)kvantová fyzika (31)magnetické pole (43)matematika (89)mechanika hmotného bodu (295)mechanika plynů (87)mechanika tuhého tělesa (220)molekulová fyzika (71)geometrická optika (77)vlnová optika (65)ostatní (164)relativistická fyzika (37)statistická fyzika (21)termodynamika (153)vlnění (51)

mechanika hmotného bodu

(10 bodů)3. Série 32. Ročníku - S. zobecněná

  1. Mějme vodorovnou desku, ve které je malá dírka. Přes tuto dírku je provlečený provázek o délce $l$, na jehož spodním konci je zavěšeno závaží o hmotnosti $M$. Toto závaží lze považovat za hmotný bod. Na druhém konci provázku na rovné desce je druhý hmotný bod (kulička) o hmotnosti $m$. Provázek mezi nimi je napnutý díky závaží o hmotnosti $M$. Celou soustavu držíme v klidu tak, že část provázku pod deskou je ve svislém směru. Poté druhému hmotnému bodu, kuličce, udělíme rychlost $v$ ve vodorovném směru kolmém na provázek ve chvíli, kdy soustavu uvolníme. V tomto příkladu neuvažujte žádné tření. Zvolte vhodné souřadnice a sestavte Lagrangeovu funkci pro tuto soustavu.
  2. Mějme železnou tyč ohnutou do tvaru paraboly tak, že pokud v kartézské soustavě působí tíhové zrychlení v záporném směru osy $y$, pak tyč má stejný tvar jako funkce $y = x^2$. Po tyči se může volně pohybovat hmotný bod o hmotnosti $M$, ke kterému je pevnou nehmotnou tyčkou o délce $l$ připevněno závaží o hmotnosti $m$. Takto jsme vytvořili kyvadlo se závěsem klouzajícím podél ohnuté tyče. Konstrukce dovoluje pohyb celé soustavy pouze v rovině paraboly. Určete vhodné zobecněné souřadnice a najděte Lagrangeovu funkci této soustavy.
  3. Mějme přímku nakloněnou pod úhlem $\alpha $ vzhledem k vodorovné rovině, po které se pohybuje bez tření hmotný bod o hmotnosti $m$. Najděte vhodné zobecněné souřadnice této soustavy a sestavte Lagrangeovu funkci. Poté sestavte i Lagrangeovy rovnice, dvakrát je zintegrujte, a tak najděte řešení. Zkontrolujte si, zda vaše řešení vychází stejně, jako řešení, které byste získali středoškolskou metodou výpočtu. Při integraci nezapomeňte na integrační konstanty a vysvětlete jejich význam. Jaké budou jejich hodnoty, pokud se bod spustí z klidu z výšky $h$?

(7 bodů)2. Série 32. Ročníku - 4. lunar lander

Jak má řídící elektronika přistávacího modulu Apolla dávkovat tah $T$ motoru (a tedy regulovat spotřebu paliva) směřující směrem dolů, aby se loď snášela na povrch Měsíce rovnoměrným přímočarým pohybem? Efektivní rychlost spalin motoru je $u$. Loď již zbrzdila svůj pohyb po orbitě a sestupuje přímo dolů v homogenním gravitačním poli se zrychlením $g$. Počáteční hmotnost modulu je $m_0$.

Bonus: Jak má elektronika dávkovat tah při přistání z výšky $h$ a počáteční rychlosti $v_0$, aby přístání bylo tzv. pádem z nulové výšky a minimalizovala se spotřeba paliva? Maximální tah motoru je $T\_{max}$.

(9 bodů)2. Série 32. Ročníku - 5. kladka a pták

Ke stropu je zavěšená pevná kladka a je na ni navlečeno lano tak, aby jeho levý i pravý konec byly ve stejné hloubce. Na jednom konci visí pták Fykosák a na druhém konci závaží, které má stejnou hmotnost jako pták. V počátečním stavu jsou pták i závaží nehybné. Popište, co se bude se soustavou dít, začne-li pták Fykosák lézt vzhůru (po svém vlastním lanu) s použitím konstantní síly. Nejprve předpokládejte, že lano je nehmotné a kladka je ideální. Poté počítejte s délkovou hmotností lana $\lambda $, jeho délkou $l$, momentem setrvačnosti kladky $J$ a jejím poloměrem $r$. Předpokládejte, že lano na kladce neprokluzuje.

Mirek přepsal úlohu od Lewise Carolla do FYKOSího tvaru.

(12 bodů)2. Série 32. Ročníku - E. listopad

Změřte průměrnou vertikální rychlost padajícího listí. Použijte listy z několika různých stromů a diskutujte, jaký vliv má tvar listu na rychlost pádu. Jak by měl vypadat ideální list, pokud bychom chtěli, aby padal co nejpomaleji?

Napadla Jáchyma, když se ptal kamaráda, jestli nezná nějaký zajímavý experiment.

(10 bodů)2. Série 32. Ročníku - S. zväzujúca

  1. Majme činku tvorenú dvoma hmotnými bodmi s hmotnosťami $m$ a $M$, ktoré sú spojené nehmotnou, ale veľmi pevnou tyčou. Táto činka padá voľným pádom. Napíšte väzbovú podmienku a zároveň aj Lagrangeove rovnice prvého druhu pre tento objekt.
  2. Majme vodorovnú položku, na ktorej je umiestnený pravouhlý trojboký hranol s hmotnosťou $M$ ako na obrázku . Po strane tohto hranolu, ktorá s podložkou zviera uhol $\alpha $, sa skĺzava hmotný bod s hmotnosťou $m$. V celom príklade neuvažujte trenie.
  • Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu.
  • Ukážte, že celková hybnosť sústavy v smere osi $x$ je pri nulovej počiatočnej rýchlosti hmotného bodu nulová.
  • Postupným riešením sústavy rovníc určte veľkosti rýchlostí hmotného bodu a hranolu v závislosti od času.
  • Určte pomer veľkostí týchto rýchlostí.


  1. Majme kyvadlo zavesené na závese. Zostavte Lagrangeove rovnice prvého druhu pre túto situáciu a ukážte, že pre ňu platí zákon zachovania energie.

(3 body)1. Série 32. Ročníku - 2. ohňostroj

Jáchym odpaloval ohňostroj, který si můžeme představit jako světlici, která je v určitý čas vystřelena rychlostí $v$ směrem svisle nahoru, a poté za nějaký čas vybuchne. Jáchym stál ve vzdálenosti $x$ od místa odpalu, když uslyšel zvuk výstřelu. Za čas $t_1$ uviděl výbuch a za čas $t_2$ po zpozorování výbuchu ho i uslyšel. Spočítejte rychlost $v$.

Jáchym v sobě pyrotechnika nezapře.

(7 bodů)1. Série 32. Ročníku - 4. pád z okna

Když James Bond pustil agenta 006 Aleca Treveljana z konstrukce radioteleskopu Arecibo ve finální scéně filmu Golden Eye, ten začal křičet s frekvencí $f$. Spočítejte závislost frekvence, kterou slyší 007, na čase. Odpor vzduchu neuvažujte.

Nápověda: Pro radu jděte k panu Dopplerovi.

Matěj se rád dívá z ok(n)a.

(10 bodů)1. Série 32. Ročníku - S. teoretická mechanika

Předtím než se začneme věnovat umění analytické mechaniky, je vhodné si zopakovat klasickou mechaniku na následující sérii příkladů.

  1. Na vrcholu křišťálové koule dřepí homogenní kulička s velmi malým poloměrem. Kuličce udělíme libovolně malou rychlost a ta tak začne padat po povrchu koule. Kde se kulička odpojí od křišťálové koule? Uvažujte, že kulička neprokluzuje.
  2. Místo koule z předchozí úlohy máme křišťálový paraboloid, daný rovnicí $y = c - ax^2$. Opět nás zajímá, kde se kulička od paraboloidu odpojí?
  3. Cyklista odbočuje rychlostí $v$ na cestu kolmou k té, po které právě jede. Zatáčku projede po části kružnice s poloměrem $r$. Jak moc se musí cyklista do zatáčky naklonit? Moment setrvačnosti kol bicyklu můžete zanedbat, cyklistu nahraďte hmotným bodem.
    Bonus: Moment hybnosti kol nemůžete zanedbat.

(8 bodů)6. Série 31. Ročníku - 5. skok z letadla

Filip o hmotnosti $80 \mathrm{kg}$ vyskočil z letadla, které je ve výšce $h_1 =500 \mathrm{m}$ nad zemí. Ve stejném okamžiku z druhého letadla skočila Danka o hmotnosti $50 \mathrm{kg}$, ale z výšky $h_2 =569 \mathrm{m}$ nad zemí. Předpokládejme, že oba mají stejný odporový koeficient $C = 1{,}2$, Filipova plocha příčného průřezu je $S_f = 2{,}2 \mathrm{m^2}$ a Dančina je $S_d=1{,}5 \mathrm{m^2}$. Hustota vzduchu $\rho =1{,}205 \mathrm{kg\cdot m^{-3}}$ se nemění s výškou. Za jakou dobu od výskoku bude Danka ve stejné výšce nad zemí jako Filip?

Danka uvažovala nad náročným životem Matfyzáka, tak se chtěla trochu odreagovat.

(3 body)5. Série 31. Ročníku - 1. schodisko na Mesiaci

Pokud bychom jednou kolonizovali Měsíc, bylo by vhodné na něm používat schody? Představte si na Měsíci klesající schodiště s výškou schodu $h=15 \mathrm{cm}$ a délkou $d=25 \mathrm{cm}$. Odhadněte počet schodů $N$, které by přeletěl člověk, jestliže před vstupem na schody šel rychlostí $v=5{,}4 \mathrm{km\cdot h^{-1}}=1{,}5 \mathrm{m\cdot s^{-1}}$. Tíhové zrychlení na povrchu Měsíce je šestkrát slabší než na povrchu Země.

Dodo čítal Mesiac je drsná milenka.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz