Vyhledávání úloh podle oboru

Databáze úloh FYKOSu odjakživa

astrofyzika (74)biofyzika (18)chemie (19)elektrické pole (64)elektrický proud (67)gravitační pole (71)hydromechanika (131)jaderná fyzika (35)kmitání (48)kvantová fyzika (25)magnetické pole (35)matematika (80)mechanika hmotného bodu (246)mechanika plynů (79)mechanika tuhého tělesa (197)molekulová fyzika (60)geometrická optika (69)vlnová optika (52)ostatní (143)relativistická fyzika (35)statistická fyzika (20)termodynamika (129)vlnění (46)

mechanika hmotného bodu

(6 bodů)2. Série 28. Ročníku - S. numerická

 

  • Délkové veličiny zadáváme v metrech, časové v sekundách a hmotnostní v kilogramech. Úhlovou rychlost $Ω$ zadáváme v radiánech za čas. Když vezmete ze seriálu rovnice pro pohyb míče, nachází se v nich ale ještě tři parametry: $α$, $β$, $γ$. Jaké jsou jejich rozměry?
  • Uvažujte volný pád míče s $Ω=0$ a $v_{x}=0$. Existuje pak konečná rychlost $v_{z}^{t}$, při které se vyrovná třecí síla a tíhové zrychlení a pád míče už nezrychluje.
  • Určete tuto rychlost pomocí parametrů z rovnic pohybu pro míč.
  • Obraťte tuto rovnost tak, aby vyjadřovala $β$. $v_{z}^{t}$ se dá dobře měřit a pro fotbalový míč o hmotnosti $m=0,5\;\mathrm{kg}$ je typicky okolo $25\, m\cdot s^{ -1}$. Kolik je pak $β$?
  • Vyjádřete si počáteční $v_{x}$ a $v_{z}$ pomocí úhlu výstřelu $φ$ při fixní počáteční rychlosti $v=10\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Sepište program podle seriálu a vyzkoušejte měnit počáteční podmínky a parametry následovně
  • Zvolte nějaké kladné $β$, vypněte rotaci $Ω=0$ a zjistěte, zda je úhel výstřelu, pod kterým doletí míč nejdál, menší nebo větší než 45°. Svoje zjištění demonstrujte pomocí grafů letu.
  • Zvolte nenulové kladné $α$ s numerickou hodnotou v daných jednotkách stejnou jako $β$, $γ=0,01$ (v daných jednotkách) a $Ω=±5rad\cdot \;\mathrm{s}^{-1}$. Jak se v daných případech změní optimální úhel výstřelu?

Bonus: Jak byste tedy nejdále dohodili krikeťákem? Je náš model pro tuto úvahu dostatečný?

(3 body)1. Série 28. Ročníku - 3. zrychlujeme

Vysvětlete, proč a jak se odehrají následující situace:

  • V cisterně tvaru kvádru s vodou plove na hladině míček. Popište pohyb míčku, začne-li se cisterna rozjíždět s konstantním zrychlením dostatečně malým, aby voda nepřetekla přes okraj.
  • V cisterně tvaru kvádru naplněné vodou se vznáší balonek naplněný vodou. Popište pohyb balonku, začne-li se cisterna rozjíždět s konstantním zrychlením dostatečně malým, aby voda nepřetekla přes okraj.
  • V uzavřeném autobusu se vznáší u stropu balonek. Popište jeho pohyb, začne-li se autobus rozjíždět s konstantním zrychlením.

Dominika a Pikoš na zkoušce z fyziky.

(5 bodů)1. Série 28. Ročníku - 5. tisícročná včela

Spočítejte, jaký výkon potřebuje včela, aby se udržela ve vzduchu, a odhadněte, jak dlouho se vydrží najedená včela vznášet v konstantní výšce.

Michalovi vyplynulo z diskuze o kvadrokoptérách.

(6 bodů)1. Série 28. Ročníku - S. nejistá

 

  • Sepište si rovnice pro vrh v homogenním gravitačním poli (nemusíte je znovu řešit, ale musíte je umět správně použít). Navrhněte přístroj, který bude vrhat předmět dle vašeho uvážení a určete pod jakým úhlem a jakou rychlostí tak činí. Můžete například vrhat pomocí pružiny, změřit její tuhost, hmotnost předmětu a vypočítat kinetickou energii a tudíž i rychlost předmětu. V jakých rozmezích jste si s rychlostí a úhlem jistí? Dosaďte tyto rozsahy do rovnic a ukažte v jakých rozmezích v důsledku toho můžete očekávat vzdálenost dopadu od vašeho předmětu. Vrhněte svůj předmět daný přístrojem alespoň pětkrát a změřte vzdálenost dopadu – v jakých rozmezích jste si jisti danou vzdáleností? Ukažte, zda se vešly vaše výsledky do toho, co jste předpověděli. (Za odkaz na video s vrhem bonusový bod!)
  • Uvažte kyvadlo s výchylkou $x$, které se efektivně kývá harmonicky, ale frekvence jeho kyvů závisí na maximální výchylce $x_{0}$

$$x(t) = x_0 \cos\left[\omega(x_0) t\right]\,, \quad \omega(x_0) = 2\pi \left(1 - \frac{x_0^2}{l_0^2}\right)\,,$$

kde $l_{0}je$ nějaká délková škála. Myslíme si, že pouštíme kyvadlo z $x_{0}=l_{0}⁄2$, ale ve skutečnosti jej vypouštíme z $x_{0}=l_{0}(1+ε)⁄2$. O kolik se liší argument kosinu od 2π po jedné námi předpokládané periodě? Po kolika periodách bude kyvadlo vychýlené na druhou stranu, než bychom předpokládali? Tip Argument kosinu se bude v tu chvíli od předpokládaného lišit o víc než π ⁄ 2.

  • Vezměte do ruky propisku a postavte jí na stůl na špičku. Proč spadne? A co rozhoduje o tom, že spadne spíš doprava, než doleva? Proč nedokážete předpovědět výsledek hodu kostkou, i když zákony fyziky by jej měly plně předurčit? Když hrajete kulečník, je neschopnost dokončit hru pouze v jednom šťouchu pouze v tom, že to nedokážete propočítat? Sepište svoje odpovědi a zkuste vyjmenovat fyzikální jevy ze života, které jsou v principu předpověditelné, ale ani dobrá znalost situace vám v předpovědi moc nepomůže.

(2 body)6. Série 27. Ročníku - 2. go west

Již před více než sto lety měření geodetů potvrdila, že když plujeme lodí směrem na západ, ukazují gravimetry větší hodnoty tíhového zrychlení než při cestě na východ. Určete, jaký rozdíl naměříme na rovníku, jestliže nejprve provedeme měření v klidu a poté za konstantní rychlosti 20 uzlů v západním směru.

Mirek se divil, proč lidé neemigrují raději na východ.

(4 body)6. Série 27. Ročníku - 5. toaleťák

Roli s papírem uchytíme do ložiska (bez tření) a necháme odmotávat konec papíru (zanedbáme lepení vrstev na sebe, tření v ložisku a hmotnost ložiska). Jakou úhlovou rychlostí se bude otáčet rulička potom, co se odmotá všechen papír? Známe poloměr a hmotnost ruličky, délkovou hustotu papíru, jeho celkovou hmotnost a délku. Uvažujte, že se papír bude odmotávat do nekonečné hloubky.

Bonus: Uvažujte, že papír dopadne na zem dříve, než se celý odmotá.

Napadla Lukáše při čtení Michalovy záchodové úlohy.

(8 bodů)5. Série 27. Ročníku - E. gumipuk

Závaží o hmotnosti $m$ na gumičce délky $l_{0}$ je zavěšeno v pevném bodě o souřadnicích $x=0$ a $y=0$. Z osy $x$, která je horizontálně, závaží pouštíme. Jaká bude závislost nejnižšího dosaženého bodu na poloze na ose $x?$

Dominika zkoušela, jak co nejlépe někomu vypíchnout oko.

(4 body)4. Série 27. Ročníku - 3. racek

Naproti sobě plují dvě lodě, první rychlostí $u_{1}=4\;\mathrm{m}\cdot \mathrm{s}^{-1}$ a druhá rychlostí $u_{2}=6\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Ve chvíli, kdy jsou od sebe vzdáleny $s_{0}=50\;\mathrm{km}$, vzlétne z první lodi racek a letí směrem ke druhé. Letí proti větru, jeho rychlost je $v_{1}=20\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Když dorazí k druhé lodi, obrátí se a letí zpět, nyní po větru rychlostí $v_{2}=30\;\mathrm{m}\cdot \mathrm{s}^{-1}$. Takto létá tak dlouho, dokud se obě lodi nesetkají. Jakou celkovou dráhu racek urazí?

Mirek vylepšoval úlohy pro ZŠ.

(3 body)4. Série 26. Ročníku - 3. kačenka ve vaně

Na trajektu máme nezabrzděné auto, které stojí rovnoběžně s jeho osou. Trajekt je se houpe harmonicky na vlnách, tj. $φ(t)=Φ\sin(ωt)$. Maximální úhlová výchylka trajektu je Φ. Jak daleko od kraje můžeme zaparkovat auto, aby nám nemohlo spadnout do moře? Uvažujte, že maximální výchylka se pomalu zvětšuje z nuly na hodnotu Φ.

Napadlo Lukáše a Jáchyma, když se zamýšleli nad fyzikou každodenní hygieny.

(5 bodů)4. Série 26. Ročníku - P. Mrazík

V pohádce Mrazík vyhodil Ivan loupežníkům kyje do takové výšky, že spadly až za půl roku. Jak vysoko by je musel vyhodit, aby dopadly za takovou dobu? Vytvořte první a druhý hrubý odhad. Zdůvodněte, proč jsou tyto odhady nejspíš řádově špatné. Co jste všechno zanedbali? Z jakých důvodů je celkově nesmyslné, aby kyje dopadly na prakticky stejné místo po půl roce? Nebraňte se proudu kritiky na tuto klasickou pohádku!

Lukáš si vzpomněl na Mrazíka.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz