1. Série 33. Ročníku

Výběr série

Termín odeslání poštou: 7. 10. 2019
Termín uploadu: 8. 10. 2019 23:59:59

(3 body)1. D1

Kamioňák se rozhodne na dálnici předjet autobus. Kamion jede o $2 \%$ vyšší rychlostí než autobus. Když je kamion přesně vedle autobusu, začne na dálnici pravotočivá zatáčka, která způsobí, že po celou zatáčku jedou obě vozidla vedle sebe a za nimi se už začíná tvořit značná kolona. Určete poloměr zatáčky (vnitřního jízdního pruhu), je-li šířka jízdních pruhů $3{,}75 \mathrm{m}$.

(3 body)2. bateriový problém na dovolené

Jak dlouho potrvá vybití plně nabité autobaterie ($12 \mathrm{V}$, $60 \mathrm{Ah}$), zapomene-li někdo vypnout potkávací světla auta, zamkne a odejde pryč? Konkrétně nás zajímá situace pro přední světla H4 (výrobce udává $55 \mathrm{W}$ každé) a zadní světla P21/5W (dle výrobce $5 \mathrm{W}$ každé). Pro jednoduchost považujte transport energie z baterie do světel za bezztrátový, odběr dalších spotřebičů (jako GPS sledování) za zanedbatelný a napětí na baterii za konstantní.

(6 bodů)3. infra sauna

Dano pokračuje ve vybavování svojí vily další saunou – tentokrát infra saunou. Chce umístit zářivku těsně pod strop sauny ve výšce $H=2{,}5 \mathrm{m}$ nad zemí. Emituje-li zářič energii s délkovým zářivým výkonem $p = 1{,}2 \mathrm{kW\cdot m^{-1}}$, jaká intenzita a energie záření bude dopadat na povrch lidského těla zhruba $h=50 \mathrm{cm}$ nad zemí? Zářivka je rovná, září homogenně a je upevněna těsně pod středem stropu od jednoho kraje sauny do druhého.

Nápověda: Pro jednoduchost uvažujte, že stěny, kde zářivka končí, a strop jsou zrcadla a že podlaha a stěny, kterých se zářivka nedotýká, záření dokonale absorbují a nevyzařují zpět do místnosti.

(7 bodů)4. disco koule

Bylo nebylo, Mišo chtěl uspořádat největší párty vůbec. K tomu je ale potřeba pořádná disco koule, a tak si nechal Měsíc obložit zrcadly, čímž z něj udělal největší disco kouli, která měla odrážet světlo od Slunce. Je zřejmé, jak párty dopadla, ale nás zajímá nejmenší možný rozdíl magnitud Slunce a disco koule při pohledu ze Země.

(9 bodů)5. obecně relativistická

Starman se před odletem do kosmu na cestu k Marsu ve svém voze Tesla Roadster domluvil s Muskem, že jakmile bude ve vzdálenosti $r=5{,}0 \cdot 10^{6} \mathrm{km}$ od hmotného středu Země, tak na něj Musk zasvítí výkonným zeleným laserem. Vlnová délka laseru se vlivem gravitačního pole Země zvětší. Porovnejte tuto změnu vlnové délky s vlivem elektromagnetického Dopplerova jevu, vzdaluje-li se Starman od Muska rychlostí $v=4{,}0 \mathrm{km\cdot s^{-1}}$. Uvažujte, že oba jevy působí zvlášť.

(10 bodů)P. ničitel planet

Jak velká by mohla být co nejmenší a nejlehčí zbraň, která by dokázala zničit planetu? Samozřejmě ještě v rozumném čase v rámci lidského života a čím rychleji, tím lépe.

(12 bodů)E. lahvová

Jak závisí frekvence zvuku, který vydáváte foukáním do skleněné lahve, na objemu kapaliny v lahvi? Diskutujte, jaký vliv na tuto závislost má tvar lahve.

(10 bodů)S. pomalý rozjezd

  1. Vyjádřete následující veličiny1) pomocí základních jednotek SI.
    1. $\jd {F}\cdot \Omega $, kde $\jd {F}$ je farad a $\Omega$ je ohm
    2. $\jd {N}\cdot \jd {Pa}$, kde $\jd {N}$ je newton a $\jd {Pa}$ je pascal
    3. $\dfrac {\jd {C}\cdot \jd {V}}{\jd {J}}$, kde $\jd {C}$ je coulomb, $\jd {V}$ je volt a $\jd {J}$ je joule
    4. $\dfrac {\jd {T}\cdot \jd {Wb}}{\jd {H}\cdot \jd {Sv}}$, kde $\jd {H}$ je henry, $\jd {Sv}$ sievert, $\jd {T}$ tesla a $\jd {Wb}$ weber
  2. V následujících tvrzeních nalezněte všechny chyby a popište, proč jde o chyby. (2 body)
    1. $s = vt^2/2 = 5{,}2 \cdot 1{,}2^2 /2 = 3{,}744 \mathrm{m}  . $
    2. $y\_m \sin \( 2 \pi \omega \) = 15 cm \cdot \sin \( 2 \cdot 3{,}141 \cdot 50 Hz \) \doteq 0 cm $
    3. Pro experimenty jsme použili úspěšně sadu gamabeta. Na základě měření radioaktivního rozpadu Uranu ve smolinci jsme zjistily, že náš vzorek má aktivitu přesně 532,24 bequerelů.
    4. $s = 1{,}23 \mathrm{m}$, $t = 2{,}7 \mathrm{s} \Rightarrow v = s/t \doteq {,}46 \mathrm{m\cdot s^{-1}}$, $m = 240 \mathrm{g}$, $E = mv^2/2 \doteq 25 \mathrm{J}$, $P = E/t \doteq 9{,}3 \mathrm{W}$
  3. Jakou silou působí vítr na korunu stromu? Víme, že to má souvislost s rychlostí větru $v$, průřezem stromu vystaveného větru $S$ a hustotou vzduchu $\rho $. Proveďte rozměrovou analýzu a na jejím základě určete vztah pro sílu.
  4. Sestavte podobnostní číslo odpovídající situaci, ve které protlačujeme kapalinu skrz charakteristickou délku $l$ pomocí gradientu tlaku $\dfrac {\d p}{\d x}$ (případně si tuto veličinu představte jednoduše jako změnu tlaku se vzdáleností $\dfrac {\Delta p}{\Delta x}$). Kapalina má hustotu $\rho $ a kinematickou viskozitu $\nu $. Určete, jaké všechny varianty tohoto podobnostního čísla existují. Jednu z nich si vyberte a pokuste se jí interpretovat.
  5. Bonus: Vymyslete co nejoriginálnější Planckovu jednotku (veličinu sestavenou z kombinace redukované Planckovy konstanty $\hbar $, gravitační konstanty $G$, rychlosti světla $c$, Boltzmannovy konstanty $k\_B$ a Coulombovy konstanty $k\_e$, přičemž nemusí obsahovat všechny). Popište její odvození a okomentujte její hodnotu. Nejzajímavější zmíníme v brožurce s řešeními.
1)
Bez ohledu na to, že dané součiny možná nedávají žádný rozumný fyzikální smysl.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz