Text seriálu 1. série Brožurka s řešeními

1... auta

3 body

Dvě auta vyjedou ve stejný čas ze stejného bodu rychlostmi $v_1 = 100\,\mathrm{km\cdot h^{-1}}$ a $v_2 = 60\,\mathrm{km\cdot h^{-1}}$. Je možné, aby se auta od sebe vzdalovala některými z následujících rychlostí? Pokud ano, příslušné situace načrtněte. \begin{alignat*}{2} v_a &= 160\,\mathrm{km\cdot h^{-1}} \,, \quad & v_b &= 40\,\mathrm{km\cdot h^{-1}} \,, \\ v_c &= 30\,\mathrm{km\cdot h^{-1}} \,, \quad & v_d &= 90\,\mathrm{km\cdot h^{-1}} \end{alignat*}

Ivo chtěl Dana srazit přesně definovanou rychlostí.

2... pravidlo dvou sekund

3 body

Pravidlo dvou sekund je pomůcka pro řidiče, která tvrdí, že bezpečný rozestup dvou vozidel jsou minimálně dvě sekundy. Mějme dopravní uzel, ve kterém $n_1$-proudá silnice přechází v $n_2$-proudou. Maximální povolená rychlost v prvním úseku je $v_1$. Jaká může být nejmenší možná maximální povolená rychlost $v_2$ ve druhém úseku, aby se v něm netvořily zácpy a všichni měli možnost dodržet pravidlo dvou sekund? Průměrná délka jednoho auta je $l$ a předpokládáme, že svoji rychlost dokáže měnit skokově.

Honza trčel příliš dlouho v dopravní zácpě.

3... zastavit na bruslích

5 bodů

Na bruslích se dá brzdit metodou „parallel slide“, při které se nože obou bruslí natočí kolmo na směr pohybu, což výrazně zvýší tření s podložkou. Aby bruslař nespadl, musí se naklonit o úhel $\phi = 35^\circ$ od svislého směru. Předpokládejte, že člověk vážící $m = 70\,\mathrm{kg}$ je i s bruslemi vysoký $H = 1{,}8\,\mathrm{m}$, přičemž těžiště má ve výšce $h = 1{,}1\,\mathrm{m}$ nad ledem. Spočítejte, na jak dlouhé dráze zastaví z počáteční rychlosti $v_0 = 15\,\mathrm{km\cdot h^{-1}}$.

Dodo neumí brzdit na bruslích (já taky ne).

4... klesá ke dnu

7 bodů

Kapsle válcového tvaru (Puddle Jumper – Stargate) s průměrem $d = 4\,\mathrm{m}$, délkou $l = 10\,\mathrm{m}$ a vodotěsnou přepážkou v polovině délky je ponořena pod hladinu oceánu a rychlostí $v = 20\,\mathrm{ft\cdot min^{-1}}$ klesá ke dnu. V hloubce $h = 1~200\,\mathrm{ft}$ praskne sklo na přední podstavě a příslušná polovina kapsle se zaplní vodou. Jakou rychlostí bude nyní klesat? Za jak dlouho klesne až na dno v hloubce $H = 3~000\,\mathrm{ft}$? Osa válce má před prasknutím skla horizontální směr. Předpokládejte, že stěny kapsle jsou vůči jejím rozměrům tenké.

Dodo sleduje Stargate Atlantis.

5... mechanicky (ne)stabilní kondenzátor

8 bodů

Představme si nabitý deskový kondenzátor, jehož jedna vodorovná deska je ve fixní pozici a druhá levituje přímo pod ní v rovnovážné pozici. Spodní deska není nijak mechanicky fixována. Jaká bude kapacita takového kondenzátoru v závislosti na přiloženém napětí? Je tento kondenzátor mechanicky stabilní?

Vašek vás chtěl ugrilovat kondenzátorem.

P... uff, to je vedro

10 bodů

Možná jste si všimli, že sopky na Zemi nemají univerzální tvar – navzájem se mohou dost lišit. Srovnejte například fotografie havajské sopky Mauna Loa a italského Vesuvu. Liší se nejen strmostí stěn, ale i stylem erupcí. Obě tyto vlastnosti úzce souvisí s viskozitou magmatu. Jak viskozita magmatu ovlivňuje styl a nebezpečnost erupcí? Souvisí to nějak s geografickou polohou sopek?

Jindrovi už hrabe ze studia „věd“ o Zemi.

E... Kdy už budou ty těstoviny?

14 bodů

Změřte závislost času začátku varu vody na jejím množství v nádobě. Měření opakujte několikrát pro alespoň pět různých objemů. Dbejte přitom na konzistentnost podmínek, zejména kritérium varu a počáteční teplotu vody, nádoby a sporáku. Výslednou závislost se pokuste vysvětlit.

Návod pro řešení experimentálních úloh
Dodův boj se sporákem na koleji.

S... začínáme slučovat

10 bodů

  1. Spočítejte energetický výtěžek následujících reakcí a kinetické energie produktů reakce \begin{align*} {}^{2}\mathrm{D} + {}^{3}\mathrm{T} &\rightarrow {}^{4}\mathrm{He} + \mathrm{n} \,,\\ {}^{2}\mathrm{D} + {}^{2}\mathrm{D} &\rightarrow {}^{3}\mathrm{T} + \mathrm{p} \,,\\ {}^{2}\mathrm{D} + {}^{2}\mathrm{D} &\rightarrow {}^{3}\mathrm{He} + \mathrm{n} \,,\\ {}^{3}\mathrm{T} + {}^{3}\mathrm{T} &\rightarrow {}^{4}\mathrm{He} + 2\mathrm{n} \,,\\ {}^{3}\mathrm{He} + {}^{3}\mathrm{He} &\rightarrow {}^{4}\mathrm{He} + 2\mathrm{p} \,,\\ {}^{3}\mathrm{T} + {}^{3}\mathrm{He} &\rightarrow {}^{4}\mathrm{He} + \mathrm{n} + \mathrm{p} \,,\\ {}^{3}\mathrm{T} + {}^{3}\mathrm{He} &\rightarrow {}^{4}\mathrm{He} + {}^{2}\mathrm{D} \,,\\ \mathrm{p} + {}^{11}\mathrm{B} &\rightarrow 3\;{}^{4}\mathrm{He} \,,\\ {}^{2}\mathrm{D} + {}^{3}\mathrm{He} &\rightarrow {}^{4}\mathrm{He} + \mathrm{p} \,. \end{align*}

  2. Pomocí grafu rychlosti výtěžku v textu seriálu pro vámi zvolenou teplotu odvoďte Lawsonovo kritérium pro dobu udržení inerciální fúze deuteria s deuteriem, protonu s borem a deuteria s heliem 3 a pro jednotlivé případy určete součin velikosti palivové peletky a hustotu stlačeného paliva. Mají tyto reakce nějakou výhodu oproti tradiční DT fúzi?
  3. Určete, jak by vypadalo Lawsonovo kritérium pro nemaxwellovské rozdělení rychlostí, kdyby kinetická energie částic byla
    1. $E_{\mathrm{k}} = k_{\mathrm{B}} T^{\alpha}$,
    2. $E_{\mathrm{k}} = a T^3 + b T^2 + c T$.
    Byla by takováto fúze vůbec realizovatelná? Pokud ano, jaké by mělo být palivo (fúzní reakce), jak velká by měla být palivová peletka a na jakou hustotu by se měla stlačit?

Pokud hledáte starou webovou stránku, najdete ji na https://old.fykos.cz