Brožurka s řešeními

1... obr a trpaslík

bodů

Obr s trpaslíkem se přetahují o lano, které je omotané kolem stomu zakořeněného tak pevně, že ho ani obr nedokáže vytrhnout nebo zlomit. Přetrhnout lano se mu také nepodaří.

Velký zlý obr je přesně $666$-krát silnější než trpaslík. Kolikrát musí být lano omotané kolem stromu, aby přetahování nikdo nevyhrál? Koeficient tření mezi lanem a stromem odhadněte.

2... valčík

bodů

Odhadněte celkovou kinetickou energii páru tančícího vídeňský valčík.

3... rampouch

bodů

Zimní sezóna se blíží, ale než vyrazíte lyžovat, zamyslete se nad tím, jaký tvar mají rampouchy rostoucí na otáčejícím se kole lyžařského vleku. Rovina kola svírá s vodorovnou rovinou úhel $\alpha$, kolo se otáčí úhlovou rychlostí $\omega $ a rampouch roste ve vzdálenosti $r$ od osy otáčení.

4... přesnost GPS

bodů

Tzv. Global Positioning System (GPS) pracuje na jednoduchém principu. Družice pohybující se na 12hodinových drahách vysílají přesně synchronizovaně signály, které příjmač detekuje. Protože na příjmači nejsou absolutně přesné hodiny, dokáže měřit jen rozdíly vzdáleností od různých satelitů. 4 satelity stačí na dopočtení polohy, poloha satelitů se změří ze Země stejným způsobem.

Zdůvodněte, proč je přesnost GPS v horizontálním směru znatelně vyšší než ve vertikálním směru.

P... magnetky

bodů

Sežeňte si někde dvě magnetky a železný plíšek. Umístěte magnetky proti sobě na opačné strany plíšku a vyzkoušejte, jakou silou se přitahují. Pak jeden z magnetků otočte a pokus opakujte. Konečně vyzkoušejte, jak se magnetky přitahují a odpuzují bez přítomnosti plíšku.

Při těchto experimentech zřejmě objevíte, že cosi (alespoň na první pohled) není v pořádku. Zamyslete se nad tím a vysvětlete, co se v jednotlivých případech děje.

E... odrazivost

bodů

Změřte koeficient odrazivosti alobalu ve viditelném světle. Vhodnou metodu navrhněte sami. Nezapomeňte popsat, jakou stranu měříte, případně proměřte obě.

Návod pro řešení experimentálních úloh

S... rychlejší než světlo?

bodů

V roce $1994$ bylo provedeno měření na rádiových vlnách emitovaných složeným zdrojem z naší Galaxie. Centrum tohoto zdroje je od nás vzdáleno $R = 3,86.10^{20} \,\jd{m}$. V rádiovém spektru byly pozorovány dva objekty vzdalující se od centra v navzájem opačných směrech. Naměřené úhlové rychlosti těchto objektů byly $\omega _{1} = 9,73.10^{-13} \,\jd{rad.s^{-1}}$ a $\omega _{2} = 4,42.10^{-13} \,\jd{rad.s^{-1}}$. Tomu odpovídají příčné lineární rychlosti $v_{1} = R\omega _{1} =3,76.10^{8} \,\jd{m.s^{-1}}$ a $v_{2} = R\omega _{2} = 1,71.10^{8} \,\jd{m.s^{-1}}$. První zdroj se tedy musí pohybovat nadsvětelnou rychlostí! Jak je to možné?

Uvažujte zdroj světla, který se pohybuje v soustavě spojené s pozorovatelem rychlostí $v$. Rychlost zdroje svírá se spojnicí zdroje a pozorovatele úhel $\varphi$. Vzdálenost zdroje a pozorovatele je rovna $R$. Vypočtěte, jakou úhlovou rychlost zdroje uvidí pozorovatel. Kdy bude úhlová rychlost zdroje odpovídat nadsvětelné příčné rychlosti?

Užitím předchozího výsledku určete, jakou skutečnou rychlostí se pohybují oba objekty za předpokladu, že rychlosti obou zdrojů jsou stejné.

Pokud hledáte starou webovou stránku, najdete ji na https://old.fykos.cz