1... silák
bodů
Za devatero horami je země, v níž se síla měří v jednotkách zvaných $\textrm{dag}$. Na pouti tam silák napíná oběma rukama lano, na němž je zavěšen telefonní seznam o tíze $10\; \textrm{dagů}$. (Kdyby silák držel oba konce provazu u sebe, napětí v obou částech lana by bylo $5\; \textrm{dagů}$.) Jaké bude napětí v obou částech lana, když silák roztáhne lano do vodorovné polohy?
- $5\; \textrm{dagů}$
- $10\; \textrm{dagů}$
- $20\; \textrm{dagů}$
- více než milión $\textrm{dagů}$
2... čluny
bodů
Obrázek ukazuje dva čluny pohybující se po hladině jezera. Z obálky vln soudíme, že
- obě lodi plují větší rychlostí, než je rychlost povrchových vln, přičemž loď I pluje rychleji než loď II
- loď I pluje rychleji než loď II, ale nemusí nutně plout větší rychlostí, než je rychlost povrchových vln
- ani a), ani b)
3... Křemílek
bodů
Křemílek chce dostat z misky těžkou kuličku. Stěny misky jsou však příliš strmé, aby ji vykulil přímo. Svými silami
- může dostat kuličku ven. (Jak?)
- nemůže dostat kuličku ven.
4... pružiny
bodů
Pohrajme si s dvěma stejně dlouhými, ale různě tuhými pružinami. (Jejich tuhosti označíme $k_{1}$ a $k_{2}$.) Když je spojíme (viz obrázek), chovají se dohromady jako jediná pružina? Jaká je tuhost $k_{výsl}$ této „výsledné“ pružiny při spojení vedle sebe a jaká při spojení za sebou?
P... balónek
bodů
Tato úloha má otevřené řešení, proto nezapomeňte uvést všechny použité zdroje.
Jak moc můžete nafouknout pouťový balónek, než praskne? Předpokládejme, že balónek má tvar koule. V nenafouknutém (nebo velmi slabě nafouknutém) stavu nechť má poloměr $r_{0}$ (třeba $5\; \textrm{cm}$). Je z gumové blány, jejíž elastické vlastnosti i pevnost známe. Na obrázku je znázorněn kruh vystřižený z materiálu, z něhož je balónek. Tučně vyznačená délka obvodu je jednotková. Pro jednoduchost předpokládejme, že kdybychom kruh z této blány roztahovali na okraji (viz obrázek) tak, že by síla na jednotku délky obvodu kruhu byla $f$, byl by poloměr kruhu přímo úměrný $f$.
$R=R_{0}(1+αf)$. Maximální síla na jednotku délky (při níž materiál balónku praskne) nechť je $f_{max}$.
Předpokládejme dále, že na jedno nadechnutí naberete do plic objem $V_{fuk}$ vzduchu a ten pak fouknete do balónku. Kolikrát můžete do balónku fouknout, než praskne, a jaký bude mít rozměr? (Zkuste též odhadnout reálné hodnoty veličin v problému vystupujících a diskutovat oprávněnost předpokladů.)
E... domino
bodů
K této úloze budete potřebovat kostičky domina. Postavte si řadu těchto kostiček za sebou. Ťuknete-li lehce do krajní kostičky, začne padat, porazí druhou, ta třetí... Vidíme, že řadou kostiček bude probíhat „vlna“. Experimentujte s touto soustavou.
Změřte rychlost šíření této vlny v závislosti na vzdálenosti kostiček. Zkuste měnit další podmínky vašeho experimentu (např. nakloňte rovinu, na níž kostičky stojí, změňte materiál podložky – hladký, drsný – atd.). Není-li pro vás dostupné domino, zkuste použít třeba krabičky od sirek či jiné vhodné objekty.
Snažte se výsledky fyzikálně komentovat, eventuelně i teoreticky vysvětlit.
Návod pro řešení experimentálních úlohS... odpor působící na auto
bodů
Spočtěte, jak bude s časem klesat rychlost auta brzděného jen odporem vzduchu. Auto jede po rovině na neutrál a zanedbáme valivé tření kol atd. – vše kromě odporu vzduchu.
Návod: Síla, kterou je auto brzděno, je v daném případě zhruba úměrná druhé mocnině jeho rychlosti: $F_{brzd}=C\cdot v$. (Pro běžný automobil lze odhadnout $C=(1–2)\; \textrm{m}^{−2}\cdot \textrm{s}$.) Uvažte, že během krátkého časového intervalu $Δt$ se síla působící na automobil příliš nezmění a jeho pohyb tedy můžeme brát jako rovnoměrně zpomalený. Celkovou změnu rychlosti za delší čas dostaneme poskládáním změn v jednotlivých „kouscích“ $Δt$.
Problém tak lze velmi dobře simulovat na mikropočítači, ale můžete využít i obyčejnou kalkulačku a hodnoty psát na papír, vynášet do grafu apod. Úlohu si můžete i rozšířit a počítat též ujetou dráhu, případně uvažovat změněné podmínky: jízdu z kopce či do kopce, jízdu pod vodou ($Cρ_{prostředí}$), vynalézavosti se meze nekladou.