Text seriálu 4. série Brožurka s řešeními

1... kofolová

2 body

Mějme kofolu s energetickou hodnotou $Q_{\mathrm{k}}=1360\; \mathrm{kJ}\cdot\mathrm{kg}^{-1}$ a teplotou $t_{\mathrm{k}}=24\;\dg\mathrm{C}$ a kofolu bez cukru s energetickou hodnotou $Q_{\mathrm{bez}}=14,\! 4\; \mathrm{kJ}\cdot\mathrm{kg}^{-1}$ a teplotou $t_{\mathrm{bez}}=4\;\mathrm{°C}$. Pokud předpokládáme, že v jiných vlastnostech se kofoly od vody neliší, při jaké teplotě můžeme pít směs těchto kapalin tak, aby byla celková získaná energie nulová?

2... mozek v mikrovlnce

2 body

Jak daleko musí být člověk od BTS, aby působení jejího vysílání na mozek bylo srovnatelné s vysíláním mobilu přímo u hlavy? Předpokládejte, že BTS vysílá rovnoměrně do poloprostoru a má vysílací výkon $400\; \mathrm{W}$. Vysílací výkon mobilu je $1\; \mathrm{W}$.

3... šetřeme lesy

3 body

Máme roli toaletního papíru o poloměru $R=8\;\mathrm{cm}$ s dutou částí o poloměru $r=2\;\mathrm{cm}$. Každá vrstva namotaného papíru má tloušťku $d=200\; \mathrm{μm}$ a vrstvy na sebe dokonale přiléhají. O kolik útržků více v takovéto roli máme, pokud má jeden útržek délku $l_{1}=9\;\mathrm{cm}$, než když má jeden útržek délku $l_{2}=13\;\mathrm{cm}?$ Jako součást řešení vyžadujeme odhad chyby použité aproximace.

Bonus: Vypočtěte přesnou délku spirály, kterou papír vytváří.

4... bubliny znovu spojeny!

4 body

Kolik nejméně se musí spojit stejně velkých mýdlových bublinek o poloměru $r$, aby vytvořily jednu, která má poloměr alespoň $3r$? Uvažujte, že vzduch v bublinách má stále stejnou teplotu.

5... skluzavka

5 bodů

Na vodorovné ploše jsou rovnoběžně položeny dva stejné kvádry o hmotnosti $m$ a délce $l$. Vzdálenost bližších stěn těchto kvádrů je $2x_{0}$. Mezi kvádry začneme lít vodu objemovým tokem $Q$. Na krajích těchto kvádrů jsou mantinely zabraňující odtékání vody z prostoru mezi kvádry. Statický koeficient tření mezi kvádrem a podložkou je $f_{0}$ a dynamický $f$. Tření mezi kvádry a mantinely neuvažujte. Jaká je podmínka na $f_{0}$, aby se kvádry vůbec nerozpohybovaly? V případě, kdy je $f_{0}$ dostatečně malé, vypočítejte závislost zrychlení kvádrů na jejich poloze a vzdálenost, ve které kvádry zastaví. Veškerý pohyb vody považujte za dostatečně pomalý, takže v ní nevznikají žádné vlny ani víry, nezahřívá se třením, ani sama nemá žádnou kinetickou energii. Protože je tedy i $Q$ malé, můžete uvažovat, že přilévání další vody po rozpohybování kvádrů nemá na jejich pohyb vliv.

Bonus: Najděte podmínku pro překlopení kvádru.

P... dietní věž

5 bodů

Jak vysoká věž by se dala postavit z hliníkových plechovek od dietního nápoje kolového typu?

E... trhni si!

8 bodů

Změřte mez pevnosti v tahu kancelářského papíru. Ideálně použijte co nejméně potištěnou část brožurky ve které vám přišlo zadání (pro tisk je využíván papír $80\; \mathrm{g} \cdot \mathrm{m}^{-2}$).

Návod pro řešení experimentálních úloh

S... pracovní

6 bodů

 

  • Z nerovnosti

$$\Delta S_{\mathrm{tot}} \geq 0 $$ ze seriálu vyjádřete $W$ a odvoďte tak nerovnost pro práci $$W \leq Q \left( 1 - \frac {T_\textrm{C}}{T_\textrm{H}} \right) \, .$$

  • Vypočítejte účinnost Carnotova cyklu bez použití entropie.

Pomůcka: Napište si 4 rovnice spojující 4 vrcholy Carnotova cyklu: $$p_1 V_1 = p_2 V_2, \;\; p_2 V_2^{\kappa} = p_3V_3^{\kappa}, \;\; p_3V_3 = p_4V_4, \;\; p_4V_4^{\kappa} = p_1V_1^{\kappa}$$ a vynásobte je všechny čtyři spolu. Po úpravě dostanete $$\frac {V_2}{V_1} = \frac {V_3}{V_4}\, .$$ Následně stačí použít vzorec na práci při izotermickém procesu: když přechází proces z objemu $V_{\textrm{A}}$ do $V_{\textrm{B}}$, práce vykonaná na plyn je $$nRT\;\ln{\left(\frac{V_\textrm{A}}{V_\textrm{B}}\right)}\, .$$ Teď už si stačí jen uvědomit, že práce při izotermickém ději je rovná teplu (se správným znaménkem) a vypočítat získanou práci (vzpomeňte si, že adiabatické procesy nepřispívají) a odebrané teplo. Na řešení stačí doplnit detaily tohoto postupu.

  • Minule jste pracovali s $pV$ a $Tp$ diagramem. Udělejte stejné cvičení s $TS$ diagramem, tedy nakreslete tam izotermický, izobarický, izochorický a adiabatický proces. Nakreslete do diagramu také cestu plynu v Carnotově cyklu a označte správně směr a vrcholy, aby souhlasily s obrázkem v seriálu.
  • V seriálu jsme se zmínili, že někdy je třeba dávat pozor na přijaté a odebrané teplo. Někdy se totiž to, jestli teplo přijímáme nebo odevzdáváme, mění v průběhu procesu. Jeden z příkladů je proces

$$p=p_0\;\mathrm{e}^{-\frac{V}{V_0}}\, ,$$ kde $p_{0}$ a $V_{0}$ jsou konstanty. Určete, pro jaké hodnoty $V$ (při rozpínání) proudí teplo do plynu a kdy z plynu.

Pokud hledáte starou webovou stránku, najdete ji na https://old.fykos.cz