Text seriálu 1. série Brožurka s řešeními

1... Pepiččina žárovička

2 body

Pepička si koupila žárovičku, dva přepínače a klubko drátu. Jak má žárovičku a přepínače zapojit, aby změnou polohy kteréhokoli přepínače žárovička vždy změnila stav mezi svítí/nesvítí? Jak by to bylo, kdyby chtěla Pepička takto zapojit víc než dva přepínače?

2... plavec v řece

2 body

Plavec se snaží přeplavat řeku, v níž teče voda rychlostí $v_{r}=2\;\mathrm{km/h}$. Sám přitom plave rychlostí $1\;\mathrm{m/s}$. Po jaké dráze a jakým směrem musí plavat, aby se nejméně namohl? V jakém místě a za jak dlouho vyplave na druhý břeh? A co aby jeho dráha byla nejkratší? Šířka řeky je $d=10\;\mathrm{m}$.

3... hustilka

4 body

Jakou teplotu má vzduch, který foukáme do duše kola? Duši hustíme na 3 atmosféry, do pumpičky přichází vzduch o teplotě 20 ° C.

4... drrrrr

4 body

Mezi dvěma opačně nabitými deskami se sem a tam odráží vodivá kulička zanedbatelných rozměrů. S jakou frekvencí se pohybuje? Napětí mezi deskami je $U$. Při nárazu se kulička nabije na náboj velikosti $Q$ shodný s polaritou desky. Koeficient restituce je $k$.

Bonus: Odpovídá výkon na tomto rezistoru energetickým ztrátám při nárazech?

Poznámka: Koeficient restituce je poměr kinetických energií po nárazu a před ním.

5... zpětný ráz

4 body

Při výstřelu z pistole zpětný ráz pistolí trhne a střela vyletí jiným směrem, než kam původně mířila hlaveň. O jak velký úhel se jedná? Uvažujte, že vliv gravitace je po celou dobu výstřelu kompenzován svaly v ruce a bod otáčení je v zápěstí. Znáte moment setrvačnosti pistole s rukou vzhledem k bodu otáčení, hmotnost a úsťovou rychlost projektilu a vzdálenosti popsané v obrázku. Hodnoty těchto veličin můžete zkusit odhadnout a výsledek číselně dopočítat.

P... zeměkrychle

5 bodů

Představte si, že by Země měla tvar krychle. Udržela by si takový tvar? Případně jak asi dlouho by si ho mohla udržet? Na čem by to záviselo? Jak by se na ní žilo? Co by se dělo lidem jdoucím po jejím obvodu – jakou gravitační sílu by pociťovali?

E... brumlovo tajemství

8 bodů

Změřte co nejvíce (alespoň 3) fyzikálních vlastností a charakteristik želatinových medvídků. Zkoumejte i rozdíly mezi jednotlivými barvami medvídků v pytlíku. Měřit můžete například teplotu tání, Youngův modul pružnosti, mez pevnosti, savost (změna objemu či hmotnosti medvídka po namočení po nějakou dobu), hustotu, vodivost, index lomu, rozpustnost (ve vodě, lihu), změnu některé z předcházejících vlastností při změně teploty či cokoliv jiného vás napadne.

Návod pro řešení experimentálních úloh

S... seriálová

6 bodů

 

  • Některé hvězdy jsou považovány za obtočné, čili cirkumpolární. Znamená to, že jsou vidět po celý rok? Jaké hvězdy jsou v našich zeměpisných šířkách vidět po celý rok? Jaká souřadnice nám cirkumpolární hvězdy označuje? Jaká je situace u nás, na pólu a na rovníku? Pro ilustraci doporučujeme stáhnout program Stellarium (www.stellarium.org, licence GNU GPL, takže program je ke stáhnutí zdarma), kde si můžete zadat jakoukoliv zeměpisnou polohu a podívat se na jednotlivé situace.
  • Srovnejte absolutní hvězdnou velikost nejjasnější hvězdy letní oblohy, Vegy ($α$ Lyr, 7.76 $\;\mathrm{pc}$ daleko, zdánlivá hvězdná velikost -0,01 $\;\mathrm{mag}$) a Betelgeuze ($α$ Ori, 200 $\;\mathrm{pc}$ daleko, zdánlivá hvězdná velikost 0.42 $\;\mathrm{mag}$). Jak by se nám hvězdy jevily, kdyby si vyměnily vzdálenosti? Diskutujte viditelnosti.
  • Transformace a zase transformace. Zkuste si spočítat transformaci mezi galaktickými a ekvatoriálními souřadnicemi II. druhu. Výrazy nemusíte upravovat do verze uvedené v literatuře.
  • Janap má ve zvyku občas se ztratit. Ona za to nemůže, občas se to stane. Tentokrát však s sebou měla theodolit. Zázračnou krabičku, která umí určit výšku hvězd nad obzorem. Změřila si polohy hvězd Arcturus a Capella a zaznamenala přesný čas. Arcturus měl 123.20 $\;\mathrm{grad}$ v 18:46:30, Capella 113.60 $\;\mathrm{grad}$ v 19:18:30. Kdepak se Janap nacházela? (Nezapomeňte, že výška hvězd je uváděna v gradech, horizont je na úrovni 100 $\;\mathrm{grad}$, plný úhel je 400 $\;\mathrm{grad}$).
Pokud hledáte starou webovou stránku, najdete ji na https://old.fykos.cz