3. Série 33. Ročníku

Výběr série

Termín odeslání poštou: 30. 12. 2019
Termín uploadu: 31. 12. 2019 23:59:59

(3 body)1. fontána s vodotryskem

Mějme fontánu s $N$ tryskami stejného průřezu, které jsou napájeny jediným čerpadlem. Z trysek tryská voda do výšky $h$. Do jaké výšky bude voda tryskat, pokud zakryjeme všechny trysky kromě jedné? Čerpadlo má konstantní průtok.

(3 body)2. …boom

Nad hlavou nám přeletěla stíhačka letící rovnoměrným pohybem vodorovně se zemským povrchem. Za $t=1{,}50 \mathrm{s}$ na to jsme uslyšeli sonický třesk v okamžiku, kdy měla stíhačka zenitovou vzdálenost $\theta =30.0\dg $. Zjistěte, jak vysoko nad námi stíhačka přeletěla.

Bonus: Z jakého směru jsme třesk slyšeli a jak daleko se toto místo nachází od místa, kde stíhačku vidíme?

(5 bodů)3. paraplíčko

Určitě jste si již všimli, že když umístíte lžičku pod proud vody (například při mytí nádobí), vytvoří jakýsi vodní hříbek. Pro zjednodušení uvažujte, že lžička je rovná a má kruhový tvar malého poloměru. Po umístění kolmo do středu proudu vody (jehož poloměr je ještě menší) padající z klidu z výšky $h$ nad dnem umyvadla vytvoří krásný rotační paraboloid. Spočítejte, do jaké výšky musíme lžičku dát, aby voda dopadala co nejdále od osy původního proudu (dno umyvadla je vodorovné). Uvažujte, že voda je ideální kapalina (nestlačitelná, neviskózní, bez vnitřního tření).

Bonus: Najděte výšku umístění lžičky, při které voda vytvoří „přístřešek“ s co největším objemem.

(8 bodů)4. beruška na gumě

Beruška leze rychlostí $4 \mathrm{cm\cdot s^{-1}}$. Když ji postavíme na gumu $40 \mathrm{cm}$ dlouhou, přeleze ji za $10 \mathrm{s}$. Co když ale v okamžiku, kdy beruška začne lézt, začneme gumu natahovat tak, že se její délka bude zvětšovat rychlostí $5 \mathrm{cm\cdot s^{-1}}$? Může dolézt na konec? Pokud ano, jak dlouho jí to bude trvat? Guma se roztahuje rovnoměrně a nikdy se nepřetrhne.

(9 bodů)5. hustota pravděpodobnosti vody

Představme si nádrž, ze které neustále vodorovně vytéká proud vody s konstantním obsahem průřezu. Rychlost proudu však náhodně kolísá s rovnoměrným rozdělením od $v_1$ do $v_2$. Po vytečení z nádrže voda volně padá na vodorovnou podlahu níže. Najděte libovolnou oblast podlahy, do které dopadne přesně $90 \mathrm{\%}$ vody.

(10 bodů)P. roj meteoritů

Je možné, aby se kapka deště vypařila dříve, než dopadne na zem? Vymyslete vhodný model odpařování dešťových kapek během jejich pádu a ukažte, za jakých podmínek (mezi relevantní parametry patří například počáteční poloměr, průběh okolní teploty v závislosti na nadmořské výšce) se může kapka zcela odpařit. Můžete přitom předpokládat, že kapka vznikne náhle v určité výšce $h_0$ s počátečním poloměrem $r_0$ a v první aproximaci padá suchou atmosférou. A kdy je možné, aby kapka zamrzla?

(12 bodů)E. husté měření

Sestavte si hustoměr, např. pomocí brčka a plastelíny, a změřte pomocí něj, jak závisí hustota vody na koncentraci rozpuštěné soli.

(10 bodů)S. vzduchová pistole podrobně

Máme vzduchovou pistoli o hmotnosti $M = 1{,}3 \mathrm{kg}$. Vystřelíme z ní diabolku (náboj), která má hmotnost $m = 0{,}50 \mathrm{g}$ a průměr $d = 4{,}5 \mathrm{mm}$.

  1. Jakou kinetickou energii bude mít náboj po výstřelu, když podle technické specifikace dosáhne rychlosti $v = 250 \mathrm{fps}$ (tedy 250 stop za sekundu)?
  2. Jaký bude zpětný ráz pistole? Zajímá nás jak rychlost, kterou by se zbraň pohybovala, kdyby nebyla upevněná, tak její hybnost.
  3. Jak se změní moment hybnosti Země, pokud vystřelíme ze zbraně rovnoběžně se zemským povrchem? Zajímají nás okamžiky, kdy měla maximální hybnost a potom, když dopadla a zcela se zastavila. Pro jednoduchost uvažujte, že zbraň je pevně spojená se Zemí (která je zcela kulatá) a že zbraň při výstřelu nezačala rotovat. Jakou úhlovou rychlost Země získá či ztratí?
  4. Jaký je spodní odhad maximálního zrychlení střely, pokud se náboj v první čtvrtině hlavně urychlí na $90 \mathrm{\%}$ maximální rychlosti? Vnitřní délka hlavně je $D =18 \mathrm{cm}$.
  5. Náboj jsme vstřelili do kousku plastelíny o hmotnosti $m\_p = 42 \mathrm{g}$, který je zavěšený na tenkém provázku délky $l = 48 \mathrm{cm}$. Pokud by náboj v plastelíně uvízl, jaká by byla maximální úhlová výchylka tohoto kyvadla?
  6. Může náboj při nárazu na lidskou pokožku překročit hodnotu plošné dopadové energie $Q\_{max} = 50 \mathrm{J\cdot cm^{-2}}$?

  7. Bonus: Nakonec se nám experiment s kyvadlem nepodařil a plastelínu jsme prostřelili. Naměřili jsme poloviční výchylku kyvadla, než jsme původně očekávali. Jaká byla výstupní rychlost náboje z plastelíny? Předpokládejte, že při průchodu plastelínou náboj nezmění směr a ani nic z plastelíny neodnese s sebou.
Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Partneři

Pořadatel

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz