6. Série 36. Ročníku

Výběr série

Termín odeslání poštou: 8. 5. 2023
Termín uploadu: 9. 5. 2023 23:59:59

(3 body)1. vodácká záhada

Za slunečného letního počasí pozorujeme na řece během dne zajímavý průběh chování větru. Ráno při východu slunce je zima a někdy i ranní mlha. Ta se následně rychle rozplyne a teplota vzduchu roste. Poté se rozfouká slabý vítr proti proudu řeky. Večer se situace uklidní a po sklonění slunce k obzoru se směr větru obrátí po proudu řeky. Čím je tento úkaz způsobený? Vysvětli proces, který v těchto dvou případech probíhá.

Katarína plula a pozorovala.

(3 body)2. shnilé jablko

Jarda našel po FYKOSím soustředění ve svém batohu jablko, které už nebylo v dobrém stavu. Hodil ho do nízkého koše na kuchyňský odpad vzdáleného $1{,}0 \mathrm{m}$ a samozřejmě se trefil. Jablko házel vodorovně z výšky $0{,}5 \mathrm{m}$, dopadlo na rozmezí stěny a dna koše, kde se rozpláclo. Koš o hmotnosti $910 \mathrm{g}$ se po dopadu jablka posunul o vzdálenost $5 \mathrm{cm}$. Jaký je koeficient tření mezi podlahou a košem? Jablko má hmotnost $230 \mathrm{g}$.

Jarda zase zapomněl sníst svačinu.

(5 bodů)3. odporné bipyramidky

figure

Náčrt situace

V drátěném modelu pravidelného $2N$-stěnného dvojjehlanu jsou vodivá spojení v rovině symetrie tvořena odpory $R_2$, zatímco spojení jdoucí z jednoho z vrcholů do bodu v pravidelném $N$-úhelníku mají odpor $R_1$. Určete odpor mezi

  1. hlavními vrcholy (nad a pod rovinou základny),
  2. sousedními vrcholy v rovině základny,
  3. protějšími vrcholy v rovině základny (ty nejvzdálenější) pro $N$ sudé.

Karel chtěl N-gonální bipyramidy.

(7 bodů)4. světlo rychlejší než světlo

Ve vzdálenosti $L$ od rozlehlého stínítka se nachází laser. Ten až do času $t=0 \mathrm{s}$ svítí na stínítko tak, že vzdálenost skvrny od laseru je $R > L$. Náhle začneme laserem otáčet rovnoměrnou úhlovou rychlostí $\omega $, přičemž vzdálenost skvrny na stínítku od laseru se zmenšuje na $L$ a následně zpět na $R$. Vyjádřete rychlost této skvrny vzhľadom na stínítko. Může překročit rychlost světla ve vakuu $c$ nebo být dokonce nekonečná? Jak (kvalitativně) tato rychlost závisí na poloze skvrny na stínítku? Celá aparatura se nachází ve vakuu.

Marek J. si chcel overiť výroky o zdanlivom prekonaní rýchlosti svetla.

(9 bodů)5. gadoliniová koule

Jaké nejmenší množství gadolinia $148$ je nutné dát k sobě dohromady, aby se svým jaderným rozpadem zahřívalo tak, že by došlo k lokálnímu tavení? Uvažujte, že probíhají pouze rozpady $\alpha $ a že materiál je ve vzduchu pokojové teploty.

Karel přemýšlel nad prvky a Matěj Rz. ho změnil.

(10 bodů)P. Zem na plné obrátky

Odhadněte horní limit práce za čas, kterou je možné na Zemi dlouhodobě vykonávat. Planeta musí zůstat obyvatelná a pokud možno se stejným klimatem i pro další generace.

(13 bodů)E. minivlny

Sestavte aparaturu, která bude schopná měřit co nejmenší vlnky na povrchu kapaliny. Nádobu si můžete sami určit – může to být hrnek, láhev či něco jiného. Aparaturu celou řádně popište a vyfoťte. Určete, jakou minimální amplitudu jste schopni naměřit.

Návod na vypracování experimentální úlohy


(10 bodů)S. excitující kvanta

Nejnižší excitovaný singletní stav beta karotenu má energii o $1{,}8 \mathrm{eV}$ vyšší než je energie základního stavu. Přechod mezi tímto stavem a základním stavem je ale zakázaný, takže molekula navtéto energii fotony neabsorbuje. Naopak přechod na druhý nejnižší singletní stav o energii $2{,}4 \mathrm{eV}$ je povolený a zodpovědný za zářivě oranžovou barvu molekuly. Nejnižší tripletní hladina pak je na energii $0{,}9 \mathrm{eV}$. Načrtněte Jablonského diagram a pomocí něj vysvětlete, proč beta karoten nefluoreskuje, přestože silně absorbuje viditelné světlo. $\(3 \mathrm{b}\)$

Bonus: Proč je pro život na zemi tak zásadní, že kyslík je v základním stavu triplet? $\(+1 \mathrm{b}\)$

Zkuste spočítat, jaký je přibližně limit pro počet orbitalů v aktivním prostoru u metody CASSCF. Uvažujte, že v aktivním prostoru máte stejně elektronů jako orbitalů (což odpovídá tomu, že v $\ce {HF}$ by právě polovina byla obsazená) a že většina dnešních superpočítačů na výpočty má maximálně $1 \mathrm{TB}$ operační paměti, do které se vám potřebuje vejít hamiltonián. $\(3 \mathrm{b}\)$

Pro litografickou výrobu moderních polovodičových čipů se používají takzvané excimerové lasery, které září v daleké UV oblasti. Jsou založené na takzvaných excimerech, což jsou molekuly, které jsou stabilní pouze v excitovaném stavu, zatímco v základním stavu se rozpadnou. Díky tomu se molekula po vyzáření fotonu rozpadne a máme zajišťené splnění podmínky pro fungování laseru, tedy to, že ve vyšším stavu je větší část molekul než v tom nižším. Zkuste pomocí Psi4 pro dimer helia ($\ce{He}_{2}^*$) spočítat a vykreslit disociační křivky základního a nejnižšího excitovaného stavu. ($\ce{He}_{2}^*$ se pro lasery zatím nevyužívá, ale například $\ce{Ar}_{2}^*$ či $\ce{Kr}_{2}^*$ ano. ) Na jaké vlnové délce vám vyjde, že by laser pracoval? Srovnejte s experimentální vlnovou délkou $66 \mathrm{nm}$. $\(4 \mathrm{b}\)$

Poznámka: U úlohy na webu najdete připravený vstupní soubor pro jednu geometrii. Nelekněte se, že v něm jsou nastavené celkově tři stavy, je to proto, že máme dva excitované stavy blízko sebe, a pokud bychom počítali jen s jednim z nich, pro některé mezijaderné vzdálenosti by to vedlo k problémům s konvergencí.

Tato stránka využívá cookies pro analýzu provozu. Používáním stránky souhlasíte s ukládáním těchto cookies na vašem počítači.Více informací

Pořadatelé a partneři

Pořadatel

Pořadatel MSMT_logotyp_text_cz

Generální partner

Partner

Mediální partner


Created with <love/> by ©FYKOS – webmaster@fykos.cz